IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v110y2018icp280-291.html
   My bibliography  Save this article

Dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and humoral immune impairment

Author

Listed:
  • Miao, Hui
  • Abdurahman, Xamxinur
  • Teng, Zhidong
  • Zhang, Long

Abstract

In this paper, the dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and chemotaxis for the uninfected target cells and humoral immune impairment is studied. By analyzing corresponding characteristic equations, the local stability of the infection-free equilibrium is established. The stability properties and Turing instability of the antibody-free equilibrium and antibody-present infection equilibrium have been extensively discussed. The existence of Hopf bifurcation with antibody response delay as a bifurcation parameter at the antibody-present infection equilibrium is established. The numerical simulations are carried out in order to illustrate the dynamical behavior of the model.

Suggested Citation

  • Miao, Hui & Abdurahman, Xamxinur & Teng, Zhidong & Zhang, Long, 2018. "Dynamical analysis of a delayed reaction-diffusion virus infection model with logistic growth and humoral immune impairment," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 280-291.
  • Handle: RePEc:eee:chsofr:v:110:y:2018:i:c:p:280-291
    DOI: 10.1016/j.chaos.2018.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918301024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiuling & Wei, Junjie, 2005. "On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 519-526.
    2. A. M. Elaiw & N. A. Alghamdi, 2015. "Global Stability of Humoral Immunity HIV Infection Models with Chronically Infected Cells and Discrete Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noura H. AlShamrani & Reham H. Halawani & Ahmed M. Elaiw, 2023. "Effect of Impaired B-Cell and CTL Functions on HIV-1 Dynamics," Mathematics, MDPI, vol. 11(20), pages 1-39, October.
    2. Luo, Yantao & Zhang, Long & Zheng, Tingting & Teng, Zhidong, 2019. "Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Ahmed M. Elaiw & Safiya F. Alshehaiween & Aatef D. Hobiny, 2019. "Global Properties of a Delay-Distributed HIV Dynamics Model Including Impairment of B-Cell Functions," Mathematics, MDPI, vol. 7(9), pages 1-27, September.
    4. Elaiw, Ahmed M. & Alshehaiween, Safiya F. & Hobiny, Aatef D., 2020. "Impact of B-cell impairment on virus dynamics with time delay and two modes of transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Elaiw, Ahmed M. & Al Agha, Afnan D., 2019. "Stability of a general HIV-1 reaction–diffusion model with multiple delays and immune response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    2. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Wang, Luxuan & Niu, Ben & Wei, Junjie, 2016. "Dynamical analysis for a model of asset prices with two delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 297-313.
    4. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    5. Sonjoy Pan & Siddhartha P. Chakrabarty, 2020. "Hopf Bifurcation and Stability Switches Induced by Humoral Immune Delay in Hepatitis C," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1673-1695, December.
    6. Dipesh, & Kumar, Pankaj, 2023. "Investigating the impact of toxicity on plant growth dynamics through the zero of a fifth-degree exponential polynomial: A mathematical model using DDE," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Hu Zhang & Anwar Zeb & Aying Wan & Zizhen Zhang, 2022. "Bifurcation Analysis of a Synthetic Drug Transmission Model with Two Time Delays," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    8. Çalış, Yasemin & Demirci, Ali & Özemir, Cihangir, 2022. "Hopf bifurcation of a financial dynamical system with delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 343-361.
    9. Kim, Kwang Su & Kim, Sangil & Jung, Il Hyo, 2018. "Hopf bifurcation analysis and optimal control of Treatment in a delayed oncolytic virus dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 1-16.
    10. Mann Manyombe, M.L. & Mbang, J. & Chendjou, G., 2021. "Stability and Hopf bifurcation of a CTL-inclusive HIV-1 infection model with both viral and cellular infections, and three delays," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    11. Sun, Dandan & Teng, Zhidong & Wang, Kai & Zhang, Tailei, 2023. "Stability and Hopf bifurcation in delayed age-structured SVIR epidemic model with vaccination and incubation," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Yang, Yu & Ye, Jin, 2009. "Hopf bifurcation in a predator–prey system with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 554-559.
    13. Wang, Yan & Liu, Xianning, 2017. "Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 138(C), pages 31-48.
    14. Farah, El Mehdi & Amine, Saida & Allali, Karam, 2021. "Dynamics of a time-delayed two-strain epidemic model with general incidence rates," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:110:y:2018:i:c:p:280-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.