IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0036107.html
   My bibliography  Save this article

Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus

Author

Listed:
  • Pranesh Padmanabhan
  • Narendra M Dixit

Abstract

The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV.

Suggested Citation

  • Pranesh Padmanabhan & Narendra M Dixit, 2012. "Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
  • Handle: RePEc:plo:pone00:0036107
    DOI: 10.1371/journal.pone.0036107
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036107
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0036107&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0036107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pranesh Padmanabhan & Narendra M Dixit, 2011. "Mathematical Model of Viral Kinetics In Vitro Estimates the Number of E2-CD81 Complexes Necessary for Hepatitis C Virus Entry," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-11, December.
    2. Alexander Ploss & Matthew J. Evans & Valeriya A. Gaysinskaya & Maryline Panis & Hana You & Ype P. de Jong & Charles M. Rice, 2009. "Human occludin is a hepatitis C virus entry factor required for infection of mouse cells," Nature, Nature, vol. 457(7231), pages 882-886, February.
    3. Matthew J. Evans & Thomas von Hahn & Donna M. Tscherne & Andrew J. Syder & Maryline Panis & Benno Wölk & Theodora Hatziioannou & Jane A. McKeating & Paul D. Bieniasz & Charles M. Rice, 2007. "Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry," Nature, Nature, vol. 446(7137), pages 801-805, April.
    4. Narendra M. Dixit & Jennifer E. Layden-Almer & Thomas J. Layden & Alan S. Perelson, 2004. "Modelling how ribavirin improves interferon response rates in hepatitis C virus infection," Nature, Nature, vol. 432(7019), pages 922-924, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mphatso Kalemera & Dilyana Mincheva & Joe Grove & Christopher J R Illingworth, 2019. "Building a mechanistic mathematical model of hepatitis C virus entry," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mphatso Kalemera & Dilyana Mincheva & Joe Grove & Christopher J R Illingworth, 2019. "Building a mechanistic mathematical model of hepatitis C virus entry," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-26, March.
    2. Pranesh Padmanabhan & Narendra M Dixit, 2011. "Mathematical Model of Viral Kinetics In Vitro Estimates the Number of E2-CD81 Complexes Necessary for Hepatitis C Virus Entry," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-11, December.
    3. Ashish Kumar & Tiana C. Rohe & Elizabeth J. Elrod & Abdul G. Khan & Altaira D. Dearborn & Ryan Kissinger & Arash Grakoui & Joseph Marcotrigiano, 2023. "Regions of hepatitis C virus E2 required for membrane association," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Libin Rong & Jeremie Guedj & Harel Dahari & Daniel J Coffield Jr & Micha Levi & Patrick Smith & Alan S Perelson, 2013. "Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    5. Pan, Sonjoy & Chakrabarty, Siddhartha P., 2022. "Analysis of a reaction–diffusion HCV model with general cell-to-cell incidence function incorporating B cell activation and cure rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 431-450.
    6. Santosh Kumar Sharma & Amar Nath Chatterjee & Bashir Ahmad, 2023. "Effect of Antiviral Therapy for HCV Treatment in the Presence of Hepatocyte Growth Factor," Mathematics, MDPI, vol. 11(3), pages 1-20, February.
    7. Tao Lu & Yangxin Huang & Min Wang & Feng Qian, 2014. "A refined parameter estimating approach for HIV dynamic model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1645-1657, August.
    8. Luo, Yantao & Zhang, Long & Zheng, Tingting & Teng, Zhidong, 2019. "Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Sonjoy Pan & Siddhartha P. Chakrabarty, 2020. "Hopf Bifurcation and Stability Switches Induced by Humoral Immune Delay in Hepatitis C," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1673-1695, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0036107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.