IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246905.html
   My bibliography  Save this article

A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing

Author

Listed:
  • Chunming Wu
  • Zhou Zeng

Abstract

Rolling bearing fault diagnosis is one of the challenging tasks and hot research topics in the condition monitoring and fault diagnosis of rotating machinery. However, in practical engineering applications, the working conditions of rotating machinery are various, and it is difficult to extract the effective features of early fault due to the vibration signal accompanied by high background noise pollution, and there are only a small number of fault samples for fault diagnosis, which leads to the significant decline of diagnostic performance. In order to solve above problems, by combining Auxiliary Classifier Generative Adversarial Network (ACGAN) and Stacked Denoising Auto Encoder (SDAE), a novel method is proposed for fault diagnosis. Among them, during the process of training the ACGAN-SDAE, the generator and discriminator are alternately optimized through the adversarial learning mechanism, which makes the model have significant diagnostic accuracy and generalization ability. The experimental results show that our proposed ACGAN-SDAE can maintain a high diagnosis accuracy under small fault samples, and have the best adaptation performance across different load domains and better anti-noise performance.

Suggested Citation

  • Chunming Wu & Zhou Zeng, 2021. "A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0246905
    DOI: 10.1371/journal.pone.0246905
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246905
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246905&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kar Hoou Hui & Ching Sheng Ooi & Meng Hee Lim & Mohd Salman Leong & Salah Mahdi Al-Obaidi, 2017. "An improved wrapper-based feature selection method for machinery fault diagnosis," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-10, December.
    2. Chen Lu & Yang Wang & Minvydas Ragulskis & Yujie Cheng, 2016. "Fault Diagnosis for Rotating Machinery: A Method based on Image Processing," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zia Ullah & Bilal Ahmad Lodhi & Jin Hur, 2020. "Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG," Energies, MDPI, vol. 13(15), pages 1-17, July.
    2. Yu Ding & Fei Wang & Zhen-ya Wang & Wen-jin Zhang, 2018. "Fault Diagnosis for Hydraulic Servo System Using Compressed Random Subspace Based ReliefF," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    3. Haiping Li & Jianmin Zhao & Xianglong Ni & Xinghui Zhang, 2018. "Fault diagnosis for machinery based on feature extraction and general regression neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1034-1046, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.