Software reliability prediction using machine learning techniques
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-016-0543-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Bo & Li, Xiang & Xie, Min & Tan, Feng, 2010. "A generic data-driven software reliability model with model mining technique," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 671-678.
- Xuemei Zhang & Daniel R. Jeske & Hoang Pham, 2002. "Calibrating software reliability models when the test environment does not match the user environment," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 18(1), pages 87-99, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Somya Goyal, 2022. "Effective software defect prediction using support vector machines (SVMs)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 681-696, April.
- Yogita Khatri & Sandeep Kumar Singh, 2023. "An effective feature selection based cross-project defect prediction model for software quality improvement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 154-172, March.
- Ajit Kumar Behera & Mrutyunjaya Panda & Satchidananda Dehuri, 2021. "Software reliability prediction by recurrent artificial chemical link network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1308-1321, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
- Gaver, Donald P. & Jacobs, Patricia A., 2014. "Reliability growth by failure mode removal," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 27-32.
- Pievatolo, Antonio & Ruggeri, Fabrizio & Soyer, Refik, 2012. "A Bayesian hidden Markov model for imperfect debugging," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 11-21.
- Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
- Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
- Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
- Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
- Pham, Hoang, 2003. "Software reliability and cost models: Perspectives, comparison, and practice," European Journal of Operational Research, Elsevier, vol. 149(3), pages 475-489, September.
More about this item
Keywords
Software reliability; Assessment; Prediction; Machine learning techniques;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0543-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.