Software reliability prediction by recurrent artificial chemical link network
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-021-01276-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Littlewood, Bev & Salako, Kizito & Strigini, Lorenzo & Zhao, Xingyu, 2020. "On reliability assessment when a software-based system is replaced by a thought-to-be-better one," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
- Arunima Jaiswal & Ruchika Malhotra, 2018. "Software reliability prediction using machine learning techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 230-244, February.
- B. Tirimula Rao & Satchidananda Dehuri & Rajib Mall, 2012. "Functional Link Artificial Neural Networks for Software Cost Estimation," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 3(2), pages 62-82, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yogita Khatri & Sandeep Kumar Singh, 2023. "An effective feature selection based cross-project defect prediction model for software quality improvement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 154-172, March.
- Somya Goyal, 2022. "Effective software defect prediction using support vector machines (SVMs)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 681-696, April.
- Anupama Kaushik & Niyati Singal & Malvika Prasad, 2022. "Incorporating whale optimization algorithm with deep belief network for software development effort estimation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1637-1651, August.
More about this item
Keywords
Reliability prediction; Functional link artificial neural network; Chemical reaction optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:6:d:10.1007_s13198-021-01276-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.