IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v7y2016i1d10.1007_s13198-015-0362-6.html
   My bibliography  Save this article

MTSF (mean time to system failure) and profit analysis of a single-unit system with inspection for feasibility of repair beyond warranty

Author

Listed:
  • Ram Niwas

    (Kurukshetra University)

  • M. S. Kadyan

    (Kurukshetra University)

  • Jitender Kumar

    (Kurukshetra University)

Abstract

This paper discussed the MTSF and profit analysis of a single-unit system with inspection for feasibility of repair beyond warranty subject to a single repair facility. Any failure during warranty is rectified by the manufacturer free of cost to the users provided failures are not due to the negligence of users. Beyond warranty, unit goes under inspection after failure for feasibility of its repair or replacement. The failure time of the system follows negative exponential distribution while repair and inspection time distributions are taken as arbitrary. The expressions for reliability, MTSF, availability of the system and profit function have been determined by using supplementary variable technique. Using Abel’s lemma steady state behavior of the system has been derived. The numerical results for reliability and profit function are also obtained by taking particular values of various parameters and repair cost.

Suggested Citation

  • Ram Niwas & M. S. Kadyan & Jitender Kumar, 2016. "MTSF (mean time to system failure) and profit analysis of a single-unit system with inspection for feasibility of repair beyond warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 198-204, December.
  • Handle: RePEc:spr:ijsaem:v:7:y:2016:i:1:d:10.1007_s13198-015-0362-6
    DOI: 10.1007/s13198-015-0362-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-015-0362-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-015-0362-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xiaoning & Li, Lin & Ni, Jun, 2009. "Option model for joint production and preventive maintenance system," International Journal of Production Economics, Elsevier, vol. 119(2), pages 347-353, June.
    2. Jeffrey Kharoufeh & Christopher Solo & M. Ulukus, 2010. "Semi-Markov models for degradation-based reliability," IISE Transactions, Taylor & Francis Journals, vol. 42(8), pages 599-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Salmasnia & Amin Yazdekhasti, 2017. "A bi-objective model to optimize periodic preventive maintenance strategy during warranty period by considering customer satisfaction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 770-781, December.
    2. S. Z. Taj & S. M. Rizwan & B. M. Alkali & D. K. Harrison & G. Taneja, 2020. "Three reliability models of a building cable manufacturing plant: a comparative analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 239-246, July.
    3. Ram Niwas & M. S. Kadyan, 2022. "A bi-objective inspection policy for a repairable engineering system with failure free warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 881-891, April.
    4. S. Z. Taj & S. M. Rizwan & B. M. Alkali & D. K. Harrison & G. Taneja, 0. "Three reliability models of a building cable manufacturing plant: a comparative analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    3. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    4. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Hu, Fei & Lim, Cheng-Chew & Lu, Zudi, 2014. "Optimal production and procurement decisions in a supply chain with an option contract and partial backordering under uncertainties," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1225-1234.
    6. Girish Kumar & Vipul Jain & Umang Soni, 2019. "Modelling and simulation of repairable mechanical systems reliability and availability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1221-1233, October.
    7. Houda Ghamlouch & Mitra Fouladirad & Antoine Grall, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Post-Print hal-02365402, HAL.
    8. Sun, Xuxue & Cai, Wenjun & Li, Mingyang, 2021. "A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xu, He, 2010. "Managing production and procurement through option contracts in supply chains with random yield," International Journal of Production Economics, Elsevier, vol. 126(2), pages 306-313, August.
    10. P Viveros & E Zio & F Kristjanpoller & A Arata, 2012. "Integrated system reliability and productive capacity analysis of a production line. A case study for a Chilean mining process," Journal of Risk and Reliability, , vol. 226(3), pages 305-317, June.
    11. Ko, Chuan-Chuan & Lin, Tyrone T. & Yang, Chyan, 2011. "The venture capital entry model on game options with jump-diffusion process," International Journal of Production Economics, Elsevier, vol. 134(1), pages 87-94, November.
    12. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    13. Moghaddass, Ramin & Zuo, Ming J., 2012. "A parameter estimation method for a condition-monitored device under multi-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 94-103.
    14. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    15. Liang, Zhenglin & Liu, Bin & Xie, Min & Parlikad, Ajith Kumar, 2020. "Condition-based maintenance for long-life assets with exposure to operational and environmental risks," International Journal of Production Economics, Elsevier, vol. 221(C).
    16. Kort, Peter & Lavrutich, Maria & Nunes, Cláudia & Oliveira, Carlos, 2023. "Preventive investment, malfunctions and liability," International Journal of Production Economics, Elsevier, vol. 263(C).
    17. Emmers, Glenn & Van Acker, Tom & Driesen, Johan, 2024. "A semi-Markovian approach to evaluate the availability of low voltage direct current systems with integrated battery storage," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    19. Jeffrey Kharoufeh & Steven Cox & Mark Oxley, 2013. "Reliability of manufacturing equipment in complex environments," Annals of Operations Research, Springer, vol. 209(1), pages 231-254, October.
    20. Díaz Cazañas Ronald & De La Paz Martínez Estrella María & Delgado Sobrino Daynier Rolando & Košťál Peter & Mudriková Andrea, 2018. "Integrating Production and Maintenance Planning as an Element of Success at the Tactical Level: A Fuzzy Control Theory Approach," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 26(42), pages 109-117, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:7:y:2016:i:1:d:10.1007_s13198-015-0362-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.