IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i2d10.1007_s13198-021-01354-x.html
   My bibliography  Save this article

A bi-objective inspection policy for a repairable engineering system with failure free warranty

Author

Listed:
  • Ram Niwas

    (Goswami Ganesh Dutta Sanatan Dharma College)

  • M. S. Kadyan

    (Kurukshetra University)

Abstract

In this article, we have proposed a bi-objective inspection policy for a repairable engineering system with failure free warranty. Here, we have considered a single repair facility which is not with the system and takes a little time to arrive at the system whenever required. In the first phase of inspection policy, the repairman inspects the machine/system after its failure to examine whether the machine failed due to unauthorized modifications or not. If it fails due to unauthorized modifications, system warranty will get terminated automatically and the consumers/users will have to pay for the repairs. Otherwise all the repairs are free of cost to the consumers. While in the second phase of inspection policy, the failed machine is inspected by the repairman beyond warranty (BW) to check the possibility of its repair. By using the Markov process, some important performance measures such as reliability of the system, availability, profit function, busy and waiting times of the repairman have been derived. Also, the impact of different parameters on reliability and profit function through an illustrative example has been analyzed. Finally, a comparative study has been carried out to support the claim that the proposed bi-objective inspection policy is more profitable than a single objective inspection policy.

Suggested Citation

  • Ram Niwas & M. S. Kadyan, 2022. "A bi-objective inspection policy for a repairable engineering system with failure free warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 881-891, April.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01354-x
    DOI: 10.1007/s13198-021-01354-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01354-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01354-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yeu-Shiang & Huang, Chao-Da & Ho, Jyh-Wen, 2017. "A customized two-dimensional extended warranty with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 257(3), pages 971-978.
    2. Zheng, Rui & Zhou, Yifan, 2021. "Comparison of three preventive maintenance warranty policies for products deteriorating with age and a time-varying covariate," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Murthy, D. N. P. & Djamaludin, I., 2002. "New product warranty: A literature review," International Journal of Production Economics, Elsevier, vol. 79(3), pages 231-260, October.
    4. Ali Salmasnia & Amin Yazdekhasti, 2017. "A bi-objective model to optimize periodic preventive maintenance strategy during warranty period by considering customer satisfaction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 770-781, December.
    5. Yeu-Shiang Huang & Chia Yen, 2009. "A study of two-dimensional warranty policies with preventive maintenance," IISE Transactions, Taylor & Francis Journals, vol. 41(4), pages 299-308.
    6. Ram Niwas & M. S. Kadyan & Jitender Kumar, 2016. "MTSF (mean time to system failure) and profit analysis of a single-unit system with inspection for feasibility of repair beyond warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 198-204, December.
    7. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2021. "Optimal warranty policy with inspection for heterogeneous, stochastically degrading items," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1142-1152.
    8. Chien, Yu-Hung, 2012. "The effects of a free-repair warranty on the discrete-time periodic replacement policy," International Journal of Production Economics, Elsevier, vol. 135(2), pages 832-839.
    9. Leung, Francis Kit-nam, 2001. "Inspection schedules when the lifetime distribution of a single-unit system is completely unknown," European Journal of Operational Research, Elsevier, vol. 132(1), pages 106-115, July.
    10. Scarf, Philip A. & Cavalcante, Cristiano A.V., 2012. "Modelling quality in replacement and inspection maintenance," International Journal of Production Economics, Elsevier, vol. 135(1), pages 372-381.
    11. Hooti, Fatemeh & Ahmadi, Jafar & Longobardi, Maria, 2020. "Optimal extended warranty length with limited number of repairs in the warranty period," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ying & Xia, Tangbin & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Optimal maintenance service strategy for OEM entering competitive MRO market under opposite patterns," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    3. Yukun Wang & Yiliu Liu & Aibo Zhang, 2019. "Preventive maintenance optimization for repairable products considering two-dimensional warranty and customer satisfaction," Journal of Risk and Reliability, , vol. 233(4), pages 553-566, August.
    4. Liu, Peng & Wang, Guanjun, 2023. "Generalized non-renewing replacement warranty policy and an age-based post-warranty maintenance strategy," European Journal of Operational Research, Elsevier, vol. 311(2), pages 567-580.
    5. Safaei, Fatemeh & Taghipour, Sharareh, 2022. "Optimal preventive maintenance for repairable products with three types of failures sold under a renewable hybrid FRW/PRW policy," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Ali Salmasnia & Amin Yazdekhasti, 2017. "A bi-objective model to optimize periodic preventive maintenance strategy during warranty period by considering customer satisfaction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 770-781, December.
    7. Xiaolin Wang & Wei Xie, 2018. "Two-dimensional warranty: A literature review," Journal of Risk and Reliability, , vol. 232(3), pages 284-307, June.
    8. Lijun Shang & Guojun Shang & Yongjun Du & Qingan Qiu & Li Yang & Qinglai Dong, 2022. "Post-Warranty Replacement Models for the Product under a Hybrid Warranty," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    9. Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
    10. Mitra, Amitava, 2021. "Warranty parameters for extended two-dimensional warranties incorporating consumer preferences," European Journal of Operational Research, Elsevier, vol. 291(2), pages 525-535.
    11. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    12. Yongjun Du & Lijun Shang & Qingan Qiu & Li Yang, 2022. "Optimum Post-Warranty Maintenance Policies for Products with Random Working Cycles," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    13. Wei Xie, 2017. "Optimal pricing and two-dimensional warranty policies for a new product," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6857-6870, November.
    14. Huang, Yeu-Shiang & Fang, Chih-Chiang & Lu, Chang-Ming & (Bill) Tseng, Tzu-Liang, 2022. "Optimal Warranty Policy for Consumer Electronics with Dependent Competing Failure Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Huang, Yeu-Shiang & Ho, Jyh-Wen & Hung, Jin-Wei & Tseng, Tzu-Liang (Bill), 2021. "A customized warranty model by considering multi-usage levels for the leasing industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    17. Rui Zheng & Chun Su & Yuqiao Zheng, 2020. "Two-stage flexible warranty decision-making considering downtime loss," Journal of Risk and Reliability, , vol. 234(3), pages 527-535, June.
    18. Rezapour, Shabnam & Allen, Janet K. & Mistree, Farrokh, 2016. "Reliable product-service supply chains for repairable products," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 299-321.
    19. Sezgin Çağlar Aksezer, 2023. "Sustainability via Extended Warranty Contracts: Design for a Consumer Electronics Retailer," Sustainability, MDPI, vol. 16(1), pages 1-11, December.
    20. Lijun Shang & Xiguang Yu & Liying Wang & Yongjun Du, 2022. "Design of Random Warranty and Maintenance Policy: From a Perspective of the Life Cycle," Mathematics, MDPI, vol. 10(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01354-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.