IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i8p1811-1824.html
   My bibliography  Save this article

Bayesian inference under progressive type-I interval censoring

Author

Listed:
  • Yu-Jau Lin
  • Y. L. Lio

Abstract

Bayesian estimation for population parameter under progressive type-I interval censoring is studied via Markov Chain Monte Carlo (MCMC) simulation. Two competitive statistical models, generalized exponential and Weibull distributions for modeling a real data set containing 112 patients with plasma cell myeloma, are studied for illustration. In model selection, a novel Bayesian procedure which involves a mixture model is proposed. Then the mix proportion is estimated through MCMC and used as the model selection criterion.

Suggested Citation

  • Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:8:p:1811-1824
    DOI: 10.1080/02664763.2012.683170
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.683170
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.683170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. D. Kemp & Adrienne W. Kemp, 1987. "Rapid Generation of Frequency Tables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 277-282, November.
    2. Kundu, Debasis & Gupta, Rameshwar D., 2008. "Generalized exponential distribution: Bayesian estimations," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1873-1883, January.
    3. Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
    4. Gupta, Rameshwar D. & Kundu, Debasis, 2003. "Discriminating between Weibull and generalized exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 179-196, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonal Budhiraja & Biswabrata Pradhan, 2020. "Point and interval estimation under progressive type-I interval censoring with random removal," Statistical Papers, Springer, vol. 61(1), pages 445-477, February.
    2. Rui Hua & Wenhao Gui, 2022. "Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring," Computational Statistics, Springer, vol. 37(5), pages 2399-2436, November.
    3. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    4. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    5. Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
    6. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.
    2. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    3. Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
    4. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    5. David Han & Debasis Kundu, 2013. "Inference for a step-stress model with competing risks from the GE distribution under Type-I censoring," Working Papers 0181mss, College of Business, University of Texas at San Antonio.
    6. Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora, 2024. "Statistical inference of the exponentiated exponential distribution based on progressive type-II censoring with optimal scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3833-3853, August.
    7. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    8. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    9. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    10. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    11. Wang, Lichun & Wang, Xuan, 2009. "The life-span prediction of a system connected in series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1770-1777.
    12. Shovan Chowdhury, 2019. "Selection between Exponential and Lindley distributions," Working papers 316, Indian Institute of Management Kozhikode.
    13. Soumya Roy & Biswabrata Pradhan, 2023. "Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 208-232, May.
    14. Debasis Kundu & Anubhav Manglick, 2004. "Discriminating between the Weibull and log‐normal distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 893-905, September.
    15. Wu, Shuo-Jye & Hsu, Chu-Chun & Huang, Syuan-Rong, 2020. "Optimal designs and reliability sampling plans for one-shot devices with cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    17. S. Mirhosseini & M. Amini & D. Kundu & A. Dolati, 2015. "On a new absolutely continuous bivariate generalized exponential distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 61-83, March.
    18. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    19. Ruizheng Niu & Weizhong Tian & Yunchu Zhang, 2023. "Discriminating among Generalized Exponential, Weighted Exponential and Weibull Distributions," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    20. Sarhan, Ammar M. & Balakrishnan, N., 2007. "A new class of bivariate distributions and its mixture," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1508-1527, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:8:p:1811-1824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.