IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004137.html
   My bibliography  Save this article

Conceptualization of a functional random walker for the analysis of socio-technical systems

Author

Listed:
  • Patriarca, Riccardo
  • Simone, Francesco
  • Artime, Oriol
  • Saurin, Tarcisio Abreu
  • Fogliatto, Flávio Sanson

Abstract

The Functional Resonance Analysis Method (FRAM) has been pointed out by several prior studies as an effective approach for modeling socio-technical systems. Despite previous contributions, FRAM still suffers from limited tractability in case of large models such as a difficulty of carrying out reliable and insightful analysis. This paper addresses this gap by proposing an approach inspired by network theory to enhance traditional FRAM analyses, namely the functional random walker (FRW). The definition of FRW complements the notion of random walks accounting for the variability being transferred inside the system from one function to another, offering a cost-effective means of exploring FRAM instantiations. Five design criteria are presented to reproduce such analysis with any FRAM model, along with two indicators, namely the probability of visiting nodes and the mean passage time. These two metrics permit to study the FRAM model both at function level (how a single function behaves within the model) and at system level (how multiple functions interact with each other). A walk-through application of FRW is presented for a healthcare setting. This application revealed how the FRW sheds light on systems’ strengths and vulnerabilities, and highlighted underlying knowledge, otherwise hidden in cluttered visual representations of FRAM instantiations.

Suggested Citation

  • Patriarca, Riccardo & Simone, Francesco & Artime, Oriol & Saurin, Tarcisio Abreu & Fogliatto, Flávio Sanson, 2024. "Conceptualization of a functional random walker for the analysis of socio-technical systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004137
    DOI: 10.1016/j.ress.2024.110341
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Raben, Ditte Caroline & Bogh, Søren Bie & Viskum, Birgit & Mikkelsen, Kim L. & Hollnagel, Erik, 2018. "Learn from what goes right: A demonstration of a new systematic method for identification of leading indicators in healthcare," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 187-198.
    3. Kaya, Gulsum Kubra & Ozturk, Fatih & Sariguzel, Emine Emel, 2021. "System-based risk analysis in a tram operating system: Integrating Monte Carlo simulation with the functional resonance analysis method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Characteristics of enhanced safety coordination between high-speed rail operators and manufacturers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Kim, Yoo Chan & Yoon, Wan Chul, 2021. "Quantitative representation of the functional resonance analysis method for risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Sun, Hao & Yang, Ming & Wang, Haiqing, 2024. "An integrated approach to quantitative resilience assessment in process systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    8. Patriarca, Riccardo & Falegnami, Andrea & Costantino, Francesco & Bilotta, Federico, 2018. "Resilience engineering for socio-technical risk analysis: Application in neuro-surgery," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 321-335.
    9. Liu, Xuan & Meng, Huixing & An, Xu & Xing, Jinduo, 2024. "Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jue & Wang, Hongwei, 2023. "Modeling and analyzing multiteam coordination task safety risks in socio-technical systems based on FRAM and multiplex network: Application in the construction industry," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Kaya, Gulsum Kubra & Hocaoglu, Mehmet Fatih, 2020. "Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Wang, Yangpeng & Li, Shuxiang & Lee, Kangkuen & Tam, Hwayaw & Qu, Yuanju & Huang, Jingyin & Chu, Xianghua, 2023. "Accident risk tensor-specific covariant model for railway accident risk assessment and prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Mahdieh Delikhoon & Esmaeil Zarei & Osiris Valdez Banda & Mohammad Faridan & Ehsanollah Habibi, 2022. "Systems Thinking Accident Analysis Models: A Systematic Review for Sustainable Safety Management," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    6. Zhou, Zhengshu & Matsubara, Yutaka & Takada, Hiroaki, 2023. "Resilience analysis and design for mobility-as-a-service based on enterprise architecture modeling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    11. Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Ahmad Dehghan Nejad & Amirhosein Bahramzadeh, 2021. "The competency of organizational safety control structure; a framework for evaluation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1180-1198, December.
    13. Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
    14. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Sun, Hao & Yang, Ming & Wang, Haiqing, 2024. "An integrated approach to quantitative resilience assessment in process systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Wu, Chao & Huang, Lang, 2019. "A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 73-85.
    17. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    18. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Dingding Yang & Yu Zheng & Kai Peng & Lidong Pan & Juan Zheng & Baojing Xie & Bohong Wang, 2022. "Characteristics and Statistical Analysis of Large and above Hazardous Chemical Accidents in China from 2000 to 2020," IJERPH, MDPI, vol. 19(23), pages 1-27, November.
    20. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.