IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i3d10.1007_s13198-020-00968-x.html
   My bibliography  Save this article

Safety improvement in a gas refinery based on resilience engineering and macro-ergonomics indicators: a Bayesian network–artificial neural network approach

Author

Listed:
  • Ali Taghi-Molla

    (University of Tehran)

  • Masoud Rabbani

    (University of Tehran)

  • Mohammad Hosein Karimi Gavareshki

    (Malek Ashtar University of Technology)

  • Ehsan Dehghani

    (Iran University of Science and Technology
    National Elites Foundation of Iran)

Abstract

The risk of accidents at workplaces, particularly in the sensitive locations with unsafe behaviors, have increased substantially, needing to be managed accurately. To ameliorate the safety in such systems, enhancing the integrated resilience engineering and macro-ergonomics concepts is of pivotal importance. In this sense, this paper unveils a novel method based on Bayesian network and artificial neural network models to enhance safety of such systems considering both mentioned concepts. Exploiting the Bayesian network, the effects of the indicators on the system safety efficiency is evaluated according to the expert’s opinions. The Artificial neural network examines these effects based on the operator’s opinions. Thereinafter, to decrease the uncertainty and bias of results and also augment the robustness and accuracy of them, the combination of the results of these models is considered as the final criterion. For analyzing the efficacy of the proposed method, a case study in a gas refinery in Ilam, Iran is conducted. The results corroborate the validity and efficacy of the proposed method and draw outstanding managerial insights.

Suggested Citation

  • Ali Taghi-Molla & Masoud Rabbani & Mohammad Hosein Karimi Gavareshki & Ehsan Dehghani, 2020. "Safety improvement in a gas refinery based on resilience engineering and macro-ergonomics indicators: a Bayesian network–artificial neural network approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 641-654, June.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:3:d:10.1007_s13198-020-00968-x
    DOI: 10.1007/s13198-020-00968-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-00968-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-00968-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    2. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    3. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    4. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    5. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    6. Jiang, P. & Liu, X., 2016. "Hidden Markov model for municipal waste generation forecasting under uncertainties," European Journal of Operational Research, Elsevier, vol. 250(2), pages 639-651.
    7. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    8. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    11. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
    12. Lacher, R. C. & Coats, Pamela K. & Sharma, Shanker C. & Fant, L. Franklin, 1995. "A neural network for classifying the financial health of a firm," European Journal of Operational Research, Elsevier, vol. 85(1), pages 53-65, August.
    13. García-Alonso, Carlos R. & Torres-Jiménez, Mercedes & Hervás-Martínez, César, 2010. "Income prediction in the agrarian sector using product unit neural networks," European Journal of Operational Research, Elsevier, vol. 204(2), pages 355-365, July.
    14. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachid Ouache & Gyan Chhipi-Shrestha & Kasun Hewage & Rehan Sadiq, 2021. "An integrated risk assessment and prediction framework for fire ignition sources in smart-green multi-unit residential buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1262-1295, December.
    2. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Samieinasab, Mina & Hamid, Mahdi & Rabbani, Masoud, 2022. "An integrated resilience engineering-lean management approach to performance assessment and improvement of clinical departments," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    2. Sevim, Cuneyt & Oztekin, Asil & Bali, Ozkan & Gumus, Serkan & Guresen, Erkam, 2014. "Developing an early warning system to predict currency crises," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1095-1104.
    3. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    4. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    5. Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
    6. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    7. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    8. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    9. XiaoJuan Zhang & Xiang Jinpeng & Farhan Khan, 2020. "The Influence of Social Media on Employee’s Knowledge Sharing Motivation: A Two-Factor Theory Perspective," SAGE Open, , vol. 10(3), pages 21582440209, July.
    10. Zhenni Ding & Huayou Chen & Ligang Zhou, 2023. "Using shapely values to define subgroups of forecasts for combining," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 905-923, July.
    11. Lessmann, Stefan & Voß, Stefan, 2017. "Car resale price forecasting: The impact of regression method, private information, and heterogeneity on forecast accuracy," International Journal of Forecasting, Elsevier, vol. 33(4), pages 864-877.
    12. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    13. Surapree Maolikul & Thira Chavarnakul & Somchai Kiatgamolchai, 2019. "Market Opportunity Analysis in Thailand: Case of Individual Power Sources by Thermoelectric-Generator Technology for Portable Electronics," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-24, May.
    14. Belton, Ian & Wright, George & Sissons, Aileen & Bolger, Fergus & Crawford, Megan M. & Hamlin, Iain & Taylor Browne Lūka, Courtney & Vasilichi, Alexandrina, 2021. "Delphi with feedback of rationales: How large can a Delphi group be such that participants are not overloaded, de-motivated, or disengaged?," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    15. Chen Wei, 2021. "The influence of Consumers’ Purchase intention on Smart Wearable Device: A study of Consumers in East China," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 46-72.
    16. Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
    17. repec:ctc:sdimse:dime21_01 is not listed on IDEAS
    18. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    19. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    20. William Lang & Julapa Jagtiani, 2010. "The Mortgage and Financial Crises: The Role of Credit Risk Management and Corporate Governance," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 38(2), pages 123-144, June.
    21. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:3:d:10.1007_s13198-020-00968-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.