Evaluation of stochastic flow networks susceptible to demand requirements between multiple sources and multiple destinations
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-019-00876-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Esha Datta & Neeraj Kumar Goyal, 2017. "Sum of disjoint product approach for reliability evaluation of stochastic flow networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1734-1749, November.
- Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Esha Datta & Neeraj Goyal, 2023. "An efficient sum of disjoint product method for reliability evaluation of stochastic flow networks using d-MPs," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1228-1246, August.
- Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
- Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Gebre, Bethel A. & Coit, David W. & Tortorella, Michael, 2006. "New insights on multi-state component criticality and importance," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 894-904.
- Chenxi Liu & Nan Chen & Jianing Yang, 2015. "New method for multi-state system reliability analysis based on linear algebraic representation," Journal of Risk and Reliability, , vol. 229(5), pages 469-482, October.
- Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
- Serkan Eryılmaz, 2011. "A new perspective to stress–strength models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 101-115, February.
- Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
- Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
- Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
- Kołowrocki, K. & Kwiatuszewska-Sarnecka, B., 2008. "Reliability and risk analysis of large systems with ageing components," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1821-1829.
- C Jacksonn & A Mosleh, 2012. "Bayesian inference with overlapping data: methodology for reliability estimation of multi-state on-demand systems," Journal of Risk and Reliability, , vol. 226(3), pages 283-294, June.
- Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
- Mohammad Nadjafi & Mohammad Ali Farsi & Hossein Jabbari, 2017. "Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 532-541, September.
- Tian, Zhigang & Levitin, Gregory & Zuo, Ming J., 2009. "A joint reliability–redundancy optimization approach for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1568-1576.
- Sharma Vikas K. & Agarwal Manju & Sen Kanwar, 2010. "Optimal Structure in Heterogeneous Multi-state Series-parallel Reliability Systems," Stochastics and Quality Control, De Gruyter, vol. 25(1), pages 127-150, January.
- Shao, Changzheng & Ding, Yi, 2020. "Two-interdependent-performance multi-state system: Definitions and reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
- Rashika Gupta & Manju Agarwal, 2006. "Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 257-277, November.
- Sheng, Yuhong & Ke, Hua, 2020. "Reliability evaluation of uncertain k-out-of-n systems with multiple states," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
- Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
More about this item
Keywords
Stochastic flow networks; Multi-source multi-destination; Minimal cut sets; Combined cut sets; Upper boundary flow vectors; Sum of disjoint products;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:5:d:10.1007_s13198-019-00876-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.