IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics095183202400499x.html
   My bibliography  Save this article

Network reliability of a stochastic flow network by wrapping linear programming models into a Monte-Carlo simulation

Author

Listed:
  • Huang, Ding-Hsiang

Abstract

A stochastic flow network (SFN) serves as a fundamental framework for real-life network-structured systems and various applications. Network reliability NRd is defined as the probability that an SFN can successfully send at least d units of demand from a source to a terminal. Current analytical algorithms for the network reliability evaluation are classified into an NP-hard problem. This limitation hinders the ability of decision-makers to monitor and manage decisions for an SFN flexibly and immediately. Therefore, this paper develops an algorithm to estimate network reliability by wrapping developed linear programming (LP) models based on minimal paths (MPs) into a Monte-Carlo simulation. The developed LP models present satisfaction of the demand d in the SFN in terms of minimal paths. The effectiveness and efficiency of the proposed algorithm are verified using a series of numerical investigations. Contributions are manifold: (1) an integrated model with the simulation and LP models is provided to estimate network reliability in terms of the MPs, thereby filling a crucial gap in existing research; (2) the scalability and efficiency of the proposed method are shown for the complex SFNs; (3) decision-making capabilities can be provided under real-time reliability predictions.

Suggested Citation

  • Huang, Ding-Hsiang, 2024. "Network reliability of a stochastic flow network by wrapping linear programming models into a Monte-Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400499x
    DOI: 10.1016/j.ress.2024.110427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400499X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    2. Sumanta Roy & Shanmugam Prasanna Venkatesan & Mark Goh, 2021. "Healthcare services: A systematic review of patient-centric logistics issues using simulation," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2342-2364, October.
    3. Yeh, Cheng-Ta & Fiondella, Lance, 2017. "Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 138-150.
    4. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Mostafa Khatami & Amir Salehipour, 2023. "The gradual minimum covering location problem," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(4), pages 1092-1104, April.
    7. Yeh, Wei-Chang & Tan, Shi-Yi & Forghani-elahabad, Majid & Khadiri, Mohamed El & Jiang, Yunzhi & Lin, Chen-Shiun, 2022. "New binary-addition tree algorithm for the all-multiterminal binary-state network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Esha Datta & Neeraj Kumar Goyal, 2017. "Sum of disjoint product approach for reliability evaluation of stochastic flow networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1734-1749, November.
    9. Paweł Marcin Kozyra, 2023. "An efficient algorithm for the reliability evaluation of multistate flow networks under budget constraints," IISE Transactions, Taylor & Francis Journals, vol. 55(11), pages 1091-1102, November.
    10. Qihao Liu & Xinyu Li & Liang Gao & Jiaxin Fan, 2023. "Two novel MILP models with different flexibilities for solving integrated process planning and scheduling problems," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(9), pages 1955-1967, September.
    11. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    12. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Wei, Wei & Zhu, Dan, 2022. "Generic improvements to least squares monte carlo methods with applications to optimal stopping problems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1132-1144.
    14. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    15. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Forghani-elahabad, Majid & Kagan, Nelson & Mahdavi-Amiri, Nezam, 2019. "An MP-based approximation algorithm on reliability evaluation of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2021. "An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Guanghan Bai & Zhigang Tian & Ming J. Zuo, 2018. "Reliability evaluation of multistate networks: An improved algorithm using state-space decomposition and experimental comparison," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 407-418, May.
    20. Cheng-Fu Huang, 2019. "Evaluation of system reliability for a stochastic delivery-flow distribution network with inventory," Annals of Operations Research, Springer, vol. 277(1), pages 33-45, June.
    21. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    22. Chang, Ping-Chen, 2024. "A path-based simulation approach for multistate flow network reliability estimation without using boundary points," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozyra, Paweł Marcin, 2024. "A parallel algorithm for reliability assessment of multi-state flow networks based on simultaneous finding of all multi-state minimal paths and performing state space decomposition," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Niu, Yi-Feng & Zhou, Run-Hui & Xu, Xiu-Zhen & Xiang, Hai-Yan, 2024. "A reliability index to measure multi-state flow network considering capacity restoration level and maintenance cost," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Huang, Cheng-Fu & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2022. "Network reliability evaluation for multi-state computing networks considering demand as the non-integer type," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Chang, Ping-Chen, 2024. "A path-based simulation approach for multistate flow network reliability estimation without using boundary points," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    7. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    8. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Niu, Yi-Feng & Xiang, Hai-Yan & Xu, Xiu-Zhen, 2024. "Expected performance evaluation and optimization of a multi-distribution multi-state logistics network based on network reliability," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Lin, Shuai & Jia, Limin & Zhang, Hengrun & Zhang, Pengzhu, 2022. "Reliability of high-speed electric multiple units in terms of the expanded multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Huang, Ding-Hsiang, 2024. "An algorithm to generate all d-lower boundary points for a stochastic flow network using dynamic flow constraints," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Ding-Hsiang Huang & Cheng-Fu Huang & Yi-Kuei Lin, 2019. "Reliability Evaluation for a Stochastic Flow Network Based on Upper and Lower Boundary Vectors," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    13. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. Niu, Yi-Feng & Song, Yi-Fan & Xu, Xiu-Zhen & Zhao, Xia, 2022. "Efficient reliability computation of a multi-state flow network with cost constraint," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Chang, Ping-Chen & Huang, Ding-Hsiang & Lin, Yi-Kuei & Nguyen, Thi-Phuong, 2021. "Reliability and maintenance models for a time-related multi-state flow network via d-MC approach," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Zhou, Yifan & Liu, Libo & Li, Hao, 2022. "Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Ping-Chen Chang & Ding-Hsiang Huang & Cheng-Fu Huang, 2024. "Simulation-based system reliability estimation of a multi-state flow network for all possible demand levels," Annals of Operations Research, Springer, vol. 340(1), pages 117-132, September.
    18. Yi-Kuei Lin & Lance Fiondella & Ping-Chen Chang, 2022. "Reliability of time-constrained multi-state network susceptible to correlated component faults," Annals of Operations Research, Springer, vol. 311(1), pages 239-254, April.
    19. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. Forghani-elahabad, Majid & Yeh, Wei-Chang, 2022. "An improved algorithm for reliability evaluation of flow networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s095183202400499x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.