IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i5d10.1007_s10726-023-09871-9.html
   My bibliography  Save this article

Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory

Author

Listed:
  • Dong Cheng

    (Donghua University)

  • Yong Wu

    (Donghua University)

  • Yuxiang Yuan

    (Xidian University)

  • Faxin Cheng

    (Jiangsu University)

  • Dianwei Chen

    (Donghua University)

Abstract

Expected utility consensus models aim to obtain a consensus solution with the maximum utility of the group. However, decision-makers (DMs) are often bounded rational in practice and their loss aversion behaviors have an important impact on the consensus-reaching, which may lead to a deviation between the actual decision and the theoretical solution. To solve this issue, we propose a maximum perceived utility consensus model based on prospect theory (MPUCM-PT) to maximize the perceived utility of the group under a budget constraint. The individual perceived utility is measured by the prospect value, and individual adjusted opinion is taken as an endogenous reference point. To explore the influence of different consensus levels on consensus modeling, we further develop a soft MPUCM-PT based on soft consensus measure. Then, upper and lower bounds of the optimal budget are given to provide a reference for setting a reasonable budget. Finally, the proposed consensus models are verified by the case of China’s Taihu Lake pollution control. Results show that, with the same level of budget, the utility satisfaction obtained by the MPUCM-PT is higher than that obtained by expected utility consensus models. Moreover, the group perceived utility based on prospect theory is also improved.

Suggested Citation

  • Dong Cheng & Yong Wu & Yuxiang Yuan & Faxin Cheng & Dianwei Chen, 2024. "Modeling the Maximum Perceived Utility Consensus Based on Prospect Theory," Group Decision and Negotiation, Springer, vol. 33(5), pages 951-975, October.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:5:d:10.1007_s10726-023-09871-9
    DOI: 10.1007/s10726-023-09871-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-023-09871-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-023-09871-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huanhuan Zhang & Gang Kou & Yi Peng, 2022. "Large-scale peer-to-peer loan consensus based on minimum cost consensus," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(10), pages 2326-2337, October.
    2. Botond Kőszegi & Matthew Rabin, 2006. "A Model of Reference-Dependent Preferences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1133-1165.
    3. Enrico G. De Giorgi & Thierry Post, 2011. "Loss Aversion with a State-Dependent Reference Point," Management Science, INFORMS, vol. 57(6), pages 1094-1110, June.
    4. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    5. Mohammed Abdellaoui & Emmanuel Kemel, 2014. "Eliciting Prospect Theory When Consequences Are Measured in Time Units: “Time Is Not Money”," Management Science, INFORMS, vol. 60(7), pages 1844-1859, July.
    6. Botond Koszegi & Matthew Rabin, 2007. "Reference-Dependent Risk Attitudes," American Economic Review, American Economic Association, vol. 97(4), pages 1047-1073, September.
    7. Cheng, Dong & Zhou, Zhili & Cheng, Faxin & Zhou, Yanfang & Xie, Yujing, 2018. "Modeling the minimum cost consensus problem in an asymmetric costs context," European Journal of Operational Research, Elsevier, vol. 270(3), pages 1122-1137.
    8. Xiao Tan & Jianjun Zhu & Tong Wu, 2022. "Dynamic Reference Point-Oriented Consensus Mechanism in Linguistic Distribution Group Decision Making Restricted by Quantum Integration of Information," Group Decision and Negotiation, Springer, vol. 31(2), pages 491-528, April.
    9. Zaiwu Gong & Chao Xu & Francisco Chiclana & Xiaoxia Xu, 2017. "Consensus Measure with Multi-stage Fluctuation Utility Based on China’s Urban Demolition Negotiation," Group Decision and Negotiation, Springer, vol. 26(2), pages 379-407, March.
    10. Zhi-Ping Fan & Xiao Zhang & Yan-Ru Zhao & Fa-Dong Chen, 2013. "Multiple Attribute Decision Making With Multiple Formats Of Attribute Aspirations: A Method Based On Prospect Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 12(04), pages 711-727.
    11. Gong, Zaiwu & Zhang, Huanhuan & Forrest, Jeffrey & Li, Lianshui & Xu, Xiaoxia, 2015. "Two consensus models based on the minimum cost and maximum return regarding either all individuals or one individual," European Journal of Operational Research, Elsevier, vol. 240(1), pages 183-192.
    12. Emin Karagözoğlu & Kerim Keskin, 2018. "Endogenous reference points in bargaining," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 283-295, October.
    13. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    14. Huang, Yeu-Shiang & Chang, Wei-Chen & Li, Wei-Hao & Lin, Zu-Liang, 2013. "Aggregation of utility-based individual preferences for group decision-making," European Journal of Operational Research, Elsevier, vol. 229(2), pages 462-469.
    15. Zhang, Huanhuan & Kou, Gang & Peng, Yi, 2019. "Soft consensus cost models for group decision making and economic interpretations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 964-980.
    16. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    17. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    18. Jing Gu & Ying Zheng & Xiaoli Tian & Zeshui Xu, 2021. "A decision-making framework based on prospect theory with probabilistic linguistic term sets," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(4), pages 879-888, March.
    19. Hai Wang & Huchang Liao & Bing Huang & Zeshui Xu, 2021. "Determining consensus thresholds for group decision making with preference relations," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2290-2300, October.
    20. Weijun Xu & Xin Chen & Yucheng Dong & Francisco Chiclana, 2021. "Impact of Decision Rules and Non-cooperative Behaviors on Minimum Consensus Cost in Group Decision Making," Group Decision and Negotiation, Springer, vol. 30(6), pages 1239-1260, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Fan-Yong & Gong, Zai-Wu & Pedrycz, Witold & Chu, Jun-Fei, 2023. "Selfish-dilemma consensus analysis for group decision making in the perspective of cooperative game theory," European Journal of Operational Research, Elsevier, vol. 308(1), pages 290-305.
    2. Guo, Weiwei & Gong, Zaiwu & Zhang, Wei-Guo & Xu, Yanxin, 2023. "Minimum cost consensus modeling under dynamic feedback regulation mechanism considering consensus principle and tolerance level," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1279-1295.
    3. Cheng, Dong & Yuan, Yuxiang & Wu, Yong & Hao, Tiantian & Cheng, Faxin, 2022. "Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors," European Journal of Operational Research, Elsevier, vol. 297(1), pages 221-238.
    4. Gong, Zaiwu & Guo, Weiwei & Słowiński, Roman, 2021. "Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction," Omega, Elsevier, vol. 104(C).
    5. Li, Huanhuan & Ji, Ying & Ding, Jieyu & Qu, Shaojian & Zhang, Huijie & Li, Yuanming & Liu, Yubing, 2024. "Robust two-stage optimization consensus models with uncertain costs," European Journal of Operational Research, Elsevier, vol. 317(3), pages 977-1002.
    6. Li, Ying & Liu, Peide & Li, Gang, 2023. "An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Zhang, Bowen & Dong, Yucheng & Zhang, Hengjie & Pedrycz, Witold, 2020. "Consensus mechanism with maximum-return modifications and minimum-cost feedback: A perspective of game theory," European Journal of Operational Research, Elsevier, vol. 287(2), pages 546-559.
    8. Tarık Kara & Emin Karagözoğlu & Elif Özcan-Tok, 2021. "Bargaining, Reference Points, and Limited Influence," Dynamic Games and Applications, Springer, vol. 11(2), pages 326-362, June.
    9. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Ying Ji & Huanhuan Li & Huijie Zhang, 2022. "Risk-Averse Two-Stage Stochastic Minimum Cost Consensus Models with Asymmetric Adjustment Cost," Group Decision and Negotiation, Springer, vol. 31(2), pages 261-291, April.
    11. Du, Junliang & Liu, Sifeng & Liu, Yong, 2022. "A limited cost consensus approach with fairness concern and its application," European Journal of Operational Research, Elsevier, vol. 298(1), pages 261-275.
    12. Schmidt, Ulrich & Friedl, Andreas & Lima de Miranda, Katharina, 2015. "Social comparison and gender differences in risk taking," Kiel Working Papers 2011, Kiel Institute for the World Economy (IfW Kiel).
    13. Khan, Abhimanyu, 2022. "Expected utility versus cumulative prospect theory in an evolutionary model of bargaining," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    14. Zhang, Hengjie & Dong, Yucheng & Chiclana, Francisco & Yu, Shui, 2019. "Consensus efficiency in group decision making: A comprehensive comparative study and its optimal design," European Journal of Operational Research, Elsevier, vol. 275(2), pages 580-598.
    15. Yangjingjing Zhang & Xia Chen & Mengting Gao & Yucheng Dong, 2024. "Maximum Utility Consensus with Inequity Aversion in Social Network Group Decision Making," Group Decision and Negotiation, Springer, vol. 33(5), pages 1115-1142, October.
    16. Wenhui Zhou & Dongmei Wang & Weixiang Huang & Pengfei Guo, 2021. "To Pool or Not to Pool? The Effect of Loss Aversion on Queue Configurations," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4258-4272, November.
    17. Yun Shi & Xiangyu Cui & Jing Yao & Duan Li, 2015. "Dynamic Trading with Reference Point Adaptation and Loss Aversion," Operations Research, INFORMS, vol. 63(4), pages 789-806, August.
    18. Tang, Ming & Liao, Huchang, 2024. "Group efficiency and individual fairness tradeoff in making wise decisions," Omega, Elsevier, vol. 124(C).
    19. Labella, Álvaro & Liu, Hongbin & Rodríguez, Rosa M. & Martínez, Luis, 2020. "A Cost Consensus Metric for Consensus Reaching Processes based on a comprehensive minimum cost model," European Journal of Operational Research, Elsevier, vol. 281(2), pages 316-331.
    20. Immanuel Lampe & Daniel Würtenberger, 2019. "Loss Aversion And The Demand For Index Insurance," Working Papers on Finance 1907, University of St. Gallen, School of Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:5:d:10.1007_s10726-023-09871-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.