IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v17y2018i3d10.1007_s10700-017-9274-z.html
   My bibliography  Save this article

Fuzzy portfolio selection model with real features and different decision behaviors

Author

Listed:
  • Yong-Jun Liu

    (South China University of Technology)

  • Wei-Guo Zhang

    (South China University of Technology)

Abstract

In the ever changing financial markets, investor’s decision behaviors may change from time to time. In this paper, we consider the effect of investor’s different decision behaviors on portfolio selection in fuzzy environment. We present a possibilistic mean-semivariance model for fuzzy portfolio selection by considering some real investment features including proportional transaction cost, fixed transaction cost, cardinality constraint, investment threshold constraints, decision dependency constraints and minimum transaction lots. To describe investor’s different decision behaviors, we characterize the return rates on securities by LR fuzzy numbers with different shape parameters in the left- and right-hand reference functions. Then, we design a novel hybrid differential evolution algorithm to solve the proposed model. Finally, we provide a numerical example to illustrate the application of our model and the effectiveness of the designed algorithm.

Suggested Citation

  • Yong-Jun Liu & Wei-Guo Zhang, 2018. "Fuzzy portfolio selection model with real features and different decision behaviors," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 317-336, September.
  • Handle: RePEc:spr:fuzodm:v:17:y:2018:i:3:d:10.1007_s10700-017-9274-z
    DOI: 10.1007/s10700-017-9274-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-017-9274-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-017-9274-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xidonas, Panagiotis & Mavrotas, George & Zopounidis, Constantin & Psarras, John, 2011. "IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection," European Journal of Operational Research, Elsevier, vol. 210(2), pages 398-409, April.
    2. Zhang, Wei-Guo & Zhang, Xi-Li & Xu, Wei-Jun, 2010. "A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 493-499, June.
    3. Dickson,David C. M., 2016. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9781107154605, October.
    4. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    5. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    6. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
    7. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bo & Huang, Yayi, 2023. "Uncertain random portfolio selection with different mental accounts based on mixed data," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    2. Antonios Georgantas & Michalis Doumpos & Constantin Zopounidis, 2024. "Robust optimization approaches for portfolio selection: a comparative analysis," Annals of Operations Research, Springer, vol. 339(3), pages 1205-1221, August.
    3. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    4. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    5. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
    6. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    7. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    8. Cristiano Arbex Valle, 2024. "Portfolio optimisation: bridging the gap between theory and practice," Papers 2407.00887, arXiv.org, revised Sep 2024.
    9. Liu, Yong-Jun & Zhang, Wei-Guo, 2013. "Fuzzy portfolio optimization model under real constraints," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 704-711.
    10. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    11. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    12. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
    13. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    14. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    15. Gabriel, Steven A. & Faria, Jose A. & Moglen, Glenn E., 2006. "A multiobjective optimization approach to smart growth in land development," Socio-Economic Planning Sciences, Elsevier, vol. 40(3), pages 212-248, September.
    16. Guo, Fenglong, 2022. "Ruin probability of a continuous-time model with dependence between insurance and financial risks caused by systematic factors," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    17. Fouad Ben Abdelaziz & Ray Saadaoui Mallek, 2018. "Multi-criteria optimal stopping methods applied to the portfolio optimisation problem," Annals of Operations Research, Springer, vol. 267(1), pages 29-46, August.
    18. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    19. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    20. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:17:y:2018:i:3:d:10.1007_s10700-017-9274-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.