IDEAS home Printed from https://ideas.repec.org/a/spr/fuzinf/v5y2013i3d10.1007_s12543-013-0150-4.html
   My bibliography  Save this article

Environmental risk modelling under probability-normal interval-valued fuzzy number

Author

Listed:
  • Rituparna Chutia

    (Gauhati University)

Abstract

In almost all the realistic circumstances, such as health risk assessment and uncertainty analysis of atmospheric dispersion, it is very essential to include all the information into modelling. The parameters associated to a particular model may include different kind of variability, imprecision and uncertainty. More often, it is seen that available informations are interpreted in probabilistic sense. Probability theory is a well-established theory to measure such kind of variability. However, not all of available information, data or model parameters affected by variability, imprecision and uncertainty can be handled by traditional probability theory. Uncertainty or imprecision may occur due to incomplete information or data, measurement errors or data obtained from expert judgement or subjective interpretation of available data or information. Thus, model parameters, data may be affected by subjective uncertainty. Traditional probability theory is inappropriate to represent them. Possibility theory and fuzzy set theory is another branch of mathematics which is used as a tool to describe the parameters with insufficient or vague knowledge. In this paper, an attempt has been made to combine probability knowledge and possibility knowledge and draw the uncertainty. The paper describes an algorithm for combining probability distribution and interval-valued fuzzy number and applied to environmental risk modelling with a case study. The primary aim of this paper is to propagate the proposed method. Computer codes are prepared for the proposed method using MATLAB.

Suggested Citation

  • Rituparna Chutia, 2013. "Environmental risk modelling under probability-normal interval-valued fuzzy number," Fuzzy Information and Engineering, Springer, vol. 5(3), pages 359-371, September.
  • Handle: RePEc:spr:fuzinf:v:5:y:2013:i:3:d:10.1007_s12543-013-0150-4
    DOI: 10.1007/s12543-013-0150-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12543-013-0150-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12543-013-0150-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    2. S. S. Isukapalli & A. Roy & P. G. Georgopoulos, 1998. "Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 351-363, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    2. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    3. James D. A. Millington & Hang Xiong & Steve Peterson & Jeremy Woods, 2017. "Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use," Land, MDPI, vol. 6(3), pages 1-18, August.
    4. Sevastjanov, P. & Figat, P., 2007. "Aggregation of aggregating modes in MCDM: Synthesis of Type 2 and Level 2 fuzzy sets," Omega, Elsevier, vol. 35(5), pages 505-523, October.
    5. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    6. Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
    7. Subhendu Ruidas & Mijanur Rahaman Seikh & Prasun Kumar Nayak, 2020. "An EPQ model with stock and selling price dependent demand and variable production rate in interval environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 385-399, April.
    8. Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    9. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    10. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    11. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    12. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    13. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    14. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    15. Fang-Xuan Hong & Deng-Feng Li, 2017. "Nonlinear programming method for interval-valued n-person cooperative games," Operational Research, Springer, vol. 17(2), pages 479-497, July.
    16. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    17. Bohan, A. & Shalloo, L. & Malcolm, B. & Ho, C.K.M. & Creighton, P. & Boland, T.M. & McHugh, N., 2016. "Description and validation of the Teagasc Lamb Production Model," Agricultural Systems, Elsevier, vol. 148(C), pages 124-134.
    18. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    19. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Jian-qiang Wang & Zhi-qiu Han & Hong-yu Zhang, 2014. "Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information," Group Decision and Negotiation, Springer, vol. 23(4), pages 715-733, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzinf:v:5:y:2013:i:3:d:10.1007_s12543-013-0150-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.