IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2739-d551938.html
   My bibliography  Save this article

Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation

Author

Listed:
  • Mahtab Kaffash

    (ESAT-Electa, KU Leuven, Kasteelpark Arenberg 10 bus 2445, 3001 Leuven, Belgium
    EnergyVille, Thor Park, 8310, 3600 Genk, Belgium)

  • Glenn Ceusters

    (ABB, Hoge Wei 27, 1930 Zaventem, Belgium
    ETEC-MOBI, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Geert Deconinck

    (ESAT-Electa, KU Leuven, Kasteelpark Arenberg 10 bus 2445, 3001 Leuven, Belgium
    EnergyVille, Thor Park, 8310, 3600 Genk, Belgium)

Abstract

Recently, multi-energy systems (MESs), whereby different energy carriers are coupled together, have become popular. For a more efficient use of MESs, the optimal operation of these systems needs to be considered. This paper focuses on the day-ahead optimal schedule of an MES, including a combined heat and electricity (CHP) unit, a gas boiler, a PV system, and energy storage devices. Starting from a day-ahead PV point forecast, a non-parametric probabilistic forecast method is proposed to build the predicted interval and represent the uncertainty of PV generation. Afterwards, the MES is modeled as mixed-integer linear programming (MILP), and the scheduling problem is solved by interval optimization. To demonstrate the effectiveness of the proposed method, a case study is performed on a real industrial MES. The simulation results show that, by using only historical PV measurement data, the point forecaster reaches a normalized root-mean square error (NRMSE) of 14.24%, and the calibration of probabilistic forecast is improved by 10% compared to building distributions around point forecast. Moreover, the results of interval optimization show that the uncertainty of the PV system not only has an influence on the electrical part of the MES, but also causes a shift in the behavior of the thermal system.

Suggested Citation

  • Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2739-:d:551938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2739/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2739/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
    3. William E. Hart & Carl D. Laird & Jean-Paul Watson & David L. Woodruff & Gabriel A. Hackebeil & Bethany L. Nicholson & John D. Siirola, 2017. "Pyomo — Optimization Modeling in Python," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-58821-6, December.
    4. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    5. Graditi, G. & Ferlito, S. & Adinolfi, G., 2016. "Comparison of Photovoltaic plant power production prediction methods using a large measured dataset," Renewable Energy, Elsevier, vol. 90(C), pages 513-519.
    6. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    7. Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
    8. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    9. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    10. Turk, Ana & Wu, Qiuwei & Zhang, Menglin & Østergaard, Jacob, 2020. "Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing," Energy, Elsevier, vol. 196(C).
    11. Liu, Yangyang & Jiang, Chuanwen & Shen, Jingshuang & Hu, Jiakai & Luo, Yifan, 2015. "Coordination of hydro units with wind power generation based on RAROC," Renewable Energy, Elsevier, vol. 80(C), pages 783-792.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Huang & Kai Yang & Weiting Zhang & Kwang Y. Lee, 2018. "Hierarchical Energy Management for the MultiEnergy Carriers System with Different Interest Bodies," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    3. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    6. Cheng, Yaohua & Zhang, Ning & Kirschen, Daniel S. & Huang, Wujing & Kang, Chongqing, 2020. "Planning multiple energy systems for low-carbon districts with high penetration of renewable energy: An empirical study in China," Applied Energy, Elsevier, vol. 261(C).
    7. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    8. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    9. Garmabdari, R. & Moghimi, M. & Yang, F. & Lu, J., 2020. "Multi-objective optimisation and planning of grid-connected cogeneration systems in presence of grid power fluctuations and energy storage dynamics," Energy, Elsevier, vol. 212(C).
    10. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    11. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    12. Ruijie Liu & Zhejing Bao & Jun Zheng & Lingxia Lu & Miao Yu, 2021. "Two-Stage Robust and Economic Scheduling for Electricity-Heat Integrated Energy System under Wind Power Uncertainty," Energies, MDPI, vol. 14(24), pages 1-25, December.
    13. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Xianzheng Zhou & Chuangxin Guo & Yifei Wang & Wanqi Li, 2017. "Optimal Expansion Co-Planning of Reconfigurable Electricity and Natural Gas Distribution Systems Incorporating Energy Hubs," Energies, MDPI, vol. 10(1), pages 1-22, January.
    15. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    16. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    17. Moghaddam, Iman Gerami & Saniei, Mohsen & Mashhour, Elaheh, 2016. "A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building," Energy, Elsevier, vol. 94(C), pages 157-170.
    18. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    19. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2739-:d:551938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.