IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v35y2023i2d10.1007_s10696-021-09440-9.html
   My bibliography  Save this article

Balancing earliness and tardiness within workload control order release: an assessment by simulation

Author

Listed:
  • Stefan Haeussler

    (University of Innsbruck)

  • Philipp Neuner

    (University of Innsbruck)

  • Matthias Thürer

    (Jinan University)

Abstract

Most Workload Control literature assumes that delivery performance is determined by tardiness related performance measures only. While this may be true for companies that directly deliver to end-customers, for make-to-stock companies or firms that are part of supply chains, producing early often means large inventories in the finished goods warehouse or penalties incurred by companies downstream in the supply chain. Some earlier Workload Control studies used a so-called time limit, which constrains the set of jobs that can be considered for order release, to reduce earliness. However, recent literature largely abandoned the time limit since it negatively impacts tardiness performance. This study revisits the time limit, assessing the use of different adaptive policies that restrict its use to periods of either low or high load. By using a simulation model of a pure job shop, the study shows that an adaptive policy allows to balance the contradictory objectives of delaying the release of orders to reduce earliness and to release orders early to respond to periods of high load as quick as possible. Meanwhile, only using a time limit in periods of high load was found to be the best policy.

Suggested Citation

  • Stefan Haeussler & Philipp Neuner & Matthias Thürer, 2023. "Balancing earliness and tardiness within workload control order release: an assessment by simulation," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 487-508, June.
  • Handle: RePEc:spr:flsman:v:35:y:2023:i:2:d:10.1007_s10696-021-09440-9
    DOI: 10.1007/s10696-021-09440-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-021-09440-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-021-09440-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Thürer & Mark Stevenson & Ting Qu, 2016. "Job sequencing and selection within workload control order release: an assessment by simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1061-1075, February.
    2. Yann Jaegler & Anicia Jaegler & Patrick Burlat & Samir Lamouri & Damien Trentesaux, 2018. "The ConWip production control system: a systematic review and classification," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5736-5757, September.
    3. Zapfel, G. & Missbauer, H., 1993. "Production Planning and Control (PPC) systems including load-oriented order release -- Problems and research perspectives," International Journal of Production Economics, Elsevier, vol. 30(1), pages 107-122, July.
    4. Land, Martin J. & Stevenson, Mark & Thürer, Matthias & Gaalman, Gerard J.C., 2015. "Job shop control: In search of the key to delivery improvements," International Journal of Production Economics, Elsevier, vol. 168(C), pages 257-266.
    5. Land, Martin, 2006. "Parameters and sensitivity in workload control," International Journal of Production Economics, Elsevier, vol. 104(2), pages 625-638, December.
    6. Oosterman, Bas & Land, Martin & Gaalman, Gerard, 2000. "The influence of shop characteristics on workload control," International Journal of Production Economics, Elsevier, vol. 68(1), pages 107-119, October.
    7. Stefan Haeussler & Pia Netzer, 2020. "Comparison between rule- and optimization-based workload control concepts: a simulation optimization approach," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3724-3743, June.
    8. Zapfel, Gunther & Missbauer, Hubert, 1993. "New concepts for production planning and control," European Journal of Operational Research, Elsevier, vol. 67(3), pages 297-320, June.
    9. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    10. Fernandes, Nuno O. & Thürer, Matthias & Silva, Cristóvão & Carmo-Silva, Sílvio, 2017. "Improving workload control order release: Incorporating a starvation avoidance trigger into continuous release," International Journal of Production Economics, Elsevier, vol. 194(C), pages 181-189.
    11. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
    12. Land, Martin & Gaalman, Gerard, 1996. "Workload control concepts in job shops A critical assessment," International Journal of Production Economics, Elsevier, vol. 46(1), pages 535-548, December.
    13. Fredendall, Lawrence D. & Ojha, Divesh & Wayne Patterson, J., 2010. "Concerning the theory of workload control," European Journal of Operational Research, Elsevier, vol. 201(1), pages 99-111, February.
    14. Land, Martin J. & Gaalman, Gerard J. C., 1998. "The performance of workload control concepts in job shops: Improving the release method," International Journal of Production Economics, Elsevier, vol. 56(1), pages 347-364, September.
    15. Thomas Hutter & Stefan Haeussler & Hubert Missbauer, 2018. "Successful implementation of an order release mechanism based on workload control: a case study of a make-to-stock manufacturer," International Journal of Production Research, Taylor & Francis Journals, vol. 56(4), pages 1565-1580, February.
    16. Haeussler, S. & Stampfer, C. & Missbauer, H., 2020. "Comparison of two optimization based order release models with fixed and variable lead times," International Journal of Production Economics, Elsevier, vol. 227(C).
    17. Kaustav Kundu & Martin J. Land & Alberto Portioli-Staudacher & Jos A. C. Bokhorst, 2021. "Order review and release in make-to-order flow shops: analysis and design of new methods," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 750-782, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onay, Anita & Stampfer, Christina & Missbauer, Hubert, 2023. "A behavioral perspective on workload control concepts: The influence of order release on operators’ reaction behavior," International Journal of Production Economics, Elsevier, vol. 264(C).
    2. Thürer, Matthias & Stevenson, Mark & Land, Martin J., 2016. "On the integration of input and output control: Workload Control order release," International Journal of Production Economics, Elsevier, vol. 174(C), pages 43-53.
    3. Kasper, T.A. Arno & Land, Martin J. & Teunter, Ruud H., 2023. "Towards System State Dispatching in High‐Variety Manufacturing," Omega, Elsevier, vol. 114(C).
    4. Matthias Thürer & Nuno O. Fernandes & Mark Stevenson, 2020. "Material Flow Control in High‐Variety Make‐to‐Order Shops: Combining COBACABANA and POLCA," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2138-2152, September.
    5. Kasper, T.A. Arno & Land, Martin J. & Teunter, Ruud H., 2023. "Non-hierarchical work-in-progress control in manufacturing," International Journal of Production Economics, Elsevier, vol. 257(C).
    6. Matthias Thürer & Mark Stevenson, 2016. "Workload control in job shops with re-entrant flows: an assessment by simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5136-5150, September.
    7. Matthias Thürer & Mark Stevenson, 2021. "Material handling and order release control in high-variety make-to-order shops: an assessment by simulation," Operations Management Research, Springer, vol. 14(3), pages 494-506, December.
    8. Fernandes, Nuno O. & Thürer, Matthias & Silva, Cristóvão & Carmo-Silva, Sílvio, 2017. "Improving workload control order release: Incorporating a starvation avoidance trigger into continuous release," International Journal of Production Economics, Elsevier, vol. 194(C), pages 181-189.
    9. Thürer, Matthias & Stevenson, Mark, 2021. "Improving superfluous load avoidance release (SLAR): A new load-based SLAR mechanism," International Journal of Production Economics, Elsevier, vol. 231(C).
    10. Jianjun Liu & Martin J. Land & Jos A. C. Bokhorst & Qingxin Chen, 2023. "Improving coordination in assembly job shops: redesigning order release and dispatching," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 669-697, September.
    11. Davide Mezzogori & Giovanni Romagnoli & Francesco Zammori, 2021. "Defining accurate delivery dates in make to order job-shops managed by workload control," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 956-991, December.
    12. Kaustav Kundu & Martin J. Land & Alberto Portioli-Staudacher & Jos A. C. Bokhorst, 2021. "Order review and release in make-to-order flow shops: analysis and design of new methods," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 750-782, September.
    13. Thürer, Matthias & Stevenson, Mark & Silva, Cristovao & Qu, Ting, 2017. "Drum-buffer-rope and workload control in High-variety flow and job shops with bottlenecks: An assessment by simulation," International Journal of Production Economics, Elsevier, vol. 188(C), pages 116-127.
    14. Matthias Thürer & Mark Stevenson & Ting Qu, 2016. "Job sequencing and selection within workload control order release: an assessment by simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1061-1075, February.
    15. Yarong Chen & Hongming Zhou & Peiyu Huang & FuhDer Chou & Shenquan Huang, 2022. "A refined order release method for achieving robustness of non-repetitive dynamic manufacturing system performance," Annals of Operations Research, Springer, vol. 311(1), pages 65-79, April.
    16. Sagawa, Juliana Keiko & Oliveira, Allan Freitas & Mušič, Gašper & Land, Martin J. & Maluf, Arthur Sarro, 2023. "Smart workload input-output control of production systems: A proof of concept," European Journal of Operational Research, Elsevier, vol. 309(1), pages 286-305.
    17. Haeussler, Stefan & Stefan, Matthias & Schneckenreither, Manuel & Onay, Anita, 2021. "The lead time updating trap: Analyzing human behavior in capacitated supply chains," International Journal of Production Economics, Elsevier, vol. 234(C).
    18. Federica Costa & Alberto Portioli-Staudacher, 2021. "Labor flexibility integration in workload control in Industry 4.0 era," Operations Management Research, Springer, vol. 14(3), pages 420-433, December.
    19. Pürgstaller, Peter & Missbauer, Hubert, 2012. "Rule-based vs. optimisation-based order release in workload control: A simulation study of a MTO manufacturer," International Journal of Production Economics, Elsevier, vol. 140(2), pages 670-680.
    20. Stevenson, Mark & Hendry, Linda C., 2006. "Aggregate load-oriented workload control: A review and a re-classification of a key approach," International Journal of Production Economics, Elsevier, vol. 104(2), pages 676-693, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:35:y:2023:i:2:d:10.1007_s10696-021-09440-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.