Berth planning and real-time disruption recovery: a simulation study for a tidal port
Author
Abstract
Suggested Citation
DOI: 10.1007/s10696-022-09473-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yujian Song & Jiantong Zhang & Ming Liu & Chengbin Chu, 2019. "The berth allocation optimisation with the consideration of time-varying water depths," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 488-516, January.
- Xavier Schepler & Nabil Absi & Dominique Feillet & Eric Sanlaville, 2019. "The stochastic discrete berth allocation problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 363-396, December.
- Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
- Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
- Yi Ding & Shuai Jia & Tianyi Gu & Chung-Lun Li, 2016. "SGICT Builds an Optimization-Based System for Daily Berth Planning," Interfaces, INFORMS, vol. 46(4), pages 281-296, August.
- Imai, Akio & Yamakawa, Yukiko & Huang, Kuancheng, 2014. "The strategic berth template problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 77-100.
- Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
- Uwe Clausen & Jan Kaffka, 2016. "Development of priority rules for handlings in inland port container terminals with simulation," Journal of Simulation, Taylor & Francis Journals, vol. 10(2), pages 95-102, May.
- Jean-François Cordeau & Gilbert Laporte & Pasquale Legato & Luigi Moccia, 2005. "Models and Tabu Search Heuristics for the Berth-Allocation Problem," Transportation Science, INFORMS, vol. 39(4), pages 526-538, November.
- L Zhen, 2013. "Yard template planning in transshipment hubs under uncertain berthing time and position," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1418-1428, September.
- Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
- Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
- Nitish Umang & Michel Bierlaire & Alan L. Erera, 2017. "Real-time management of berth allocation with stochastic arrival and handling times," Journal of Scheduling, Springer, vol. 20(1), pages 67-83, February.
- H. L. Ma & S. H. Chung & H. K. Chan & Li Cui, 2019. "An integrated model for berth and yard planning in container terminals with multi-continuous berth layout," Annals of Operations Research, Springer, vol. 273(1), pages 409-431, February.
- Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
- Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
- Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
- Tatsushi Nishi & Tatsuya Okura & Eduardo Lalla-Ruiz & Stefan Voß, 2020. "A dynamic programming-based matheuristic for the dynamic berth allocation problem," Annals of Operations Research, Springer, vol. 286(1), pages 391-410, March.
- Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos, 2001. "The dynamic berth allocation problem for a container port," Transportation Research Part B: Methodological, Elsevier, vol. 35(4), pages 401-417, May.
- Qin, Tianbao & Du, Yuquan & Sha, Mei, 2016. "Evaluating the solution performance of IP and CP for berth allocation with time-varying water depth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 167-185.
- Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
- Xiaohuan Lv & Jian Gang Jin & Hao Hu, 2020. "Berth allocation recovery for container transshipment terminals," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(4), pages 558-574, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kjetil Fagerholt & Leonard Heilig & Eduardo Lalla-Ruiz & Frank Meisel & Shuaian Wang, 2023. "Data-driven optimization and analytics for maritime logistics," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 1-4, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
- Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
- Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
- Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
- Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
- Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
- Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2023. "A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 145-170.
- Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
- Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
- Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
- Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
- Wang, Chong & Liu, Kaiyuan & Zhang, Canrong & Miao, Lixin, 2024. "Distributionally robust chance-constrained optimization for the integrated berth allocation and quay crane assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
- Meixian Jiang & Jiajia Feng & Jian Zhou & Lin Zhou & Fangzheng Ma & Guanghua Wu & Yuqiu Zhang, 2023. "Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
- Correcher, Juan Francisco & Van den Bossche, Thomas & Alvarez-Valdes, Ramon & Vanden Berghe, Greet, 2019. "The berth allocation problem in terminals with irregular layouts," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1096-1108.
- Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
- Shuai Jia & Chung-Lun Li & Zhou Xu, 2019. "Managing Navigation Channel Traffic and Anchorage Area Utilization of a Container Port," Transportation Science, INFORMS, vol. 53(3), pages 728-745, May.
- Agra, Agostinho & Rodrigues, Filipe, 2022. "Distributionally robust optimization for the berth allocation problem under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 1-24.
- Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
- Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
More about this item
Keywords
Decision support; Simulation; Port expansion; Berth allocation; Disruption management; Constraint programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:35:y:2023:i:1:d:10.1007_s10696-022-09473-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.