IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v35y2023i1d10.1007_s10696-022-09452-z.html
   My bibliography  Save this article

Design of empty container depot layouts using data and analytics

Author

Listed:
  • Erhan Karakaya

    (Purdue University)

  • Alice E. Smith

    (Auburn University)

  • Rosa G. González Ramírez

    (Universidad de Los Andes Chile)

  • Jimena Pascual

    (Pontificia Universidad Católica de Valparaíso)

Abstract

This paper presents an approach using a combination of data-driven and analytical models to design the layout of empty container depots where top-lifters (TLs) are used. A method to determine the optimum number of blocks along with the number of driving lanes is proposed where the size of the blocks is specified by the number of rows, tiers, and bays. For estimating the effects of the design variables on the TL cycle time, formulas to calculate the expected travel distance of these vehicles are derived based on geometry and a Markov chain model is used to obtain the times of retrieval and placement by the TLs using data gathered in an empirical study from a typical empty container yard. Together, the total cycle time (travel, retrieval, and placement) is then used as the objective function to evaluate alternative container yard layout options. Numerical examples from a case study are provided to illustrate the layout design procedure and show its effectiveness and pragmatism.

Suggested Citation

  • Erhan Karakaya & Alice E. Smith & Rosa G. González Ramírez & Jimena Pascual, 2023. "Design of empty container depot layouts using data and analytics," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 196-240, March.
  • Handle: RePEc:spr:flsman:v:35:y:2023:i:1:d:10.1007_s10696-022-09452-z
    DOI: 10.1007/s10696-022-09452-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-022-09452-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-022-09452-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    2. Petering, Matthew E.H., 2009. "Effect of block width and storage yard layout on marine container terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 591-610, July.
    3. Feng, Yuanjun & Song, Dong-Ping & Li, Dong & Zeng, Qingcheng, 2020. "The stochastic container relocation problem with flexible service policies," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 116-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kjetil Fagerholt & Leonard Heilig & Eduardo Lalla-Ruiz & Frank Meisel & Shuaian Wang, 2023. "Data-driven optimization and analytics for maritime logistics," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Alcalde, Enrique & Kim, Kap Hwan & Marchán, Sergi Saurí, 2015. "Optimal space for storage yard considering yard inventory forecasts and terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 101-128.
    2. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    3. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    4. Jin, Jiahuan & Ma, Mingyu & Jin, Huan & Cui, Tianxiang & Bai, Ruibin, 2023. "Container terminal daily gate in and gate out forecasting using machine learning methods," Transport Policy, Elsevier, vol. 132(C), pages 163-174.
    5. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    6. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    7. Ulf Speer & Kathrin Fischer, 2017. "Scheduling of Different Automated Yard Crane Systems at Container Terminals," Transportation Science, INFORMS, vol. 51(1), pages 305-324, February.
    8. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    9. Dirk Briskorn & Lennart Zey, 2018. "Resolving interferences of triple‐crossover‐cranes by determining paths in networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 477-498, September.
    10. Nanxi Wang & Daofang Chang & Xiaowei Shi & Jun Yuan & Yinping Gao, 2019. "Analysis and Design of Typical Automated Container Terminals Layout Considering Carbon Emissions," Sustainability, MDPI, vol. 11(10), pages 1-40, May.
    11. Matthew E. H. Petering & Yong Wu & Wenkai Li & Mark Goh & Robert Souza & Katta G. Murty, 2017. "Real-time container storage location assignment at a seaport container transshipment terminal: dispersion levels, yard templates, and sensitivity analyses," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 369-402, December.
    12. Zhen, Lu, 2016. "Modeling of yard congestion and optimization of yard template in container ports," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 83-104.
    13. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    14. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
    15. Lange, Ann-Kathrin & Kreuz, Felix & Langkau, Sven & Jahn, Carlos & Clausen, Uwe, 2020. "Defining the quota of truck appointment systems," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 211-246, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    17. Weihua Liu & Xinran Shen & Di Wang, 2020. "The impacts of dual overconfidence behavior and demand updating on the decisions of port service supply chain: a real case study from China," Annals of Operations Research, Springer, vol. 291(1), pages 565-604, August.
    18. Kastner, Marvin & Kämmerling, Nicolas & Jahn, Carlos & Clausen, Uwe, 2020. "Equipment selection and layout planning - Literature overview and research directions," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Data Science in Maritime and City Logistics: Data-driven Solutions for Logistics and Sustainability. Proceedings of the Hamburg International Conferen, volume 30, pages 485-519, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    19. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:35:y:2023:i:1:d:10.1007_s10696-022-09452-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.