IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v34y2022i2d10.1007_s10696-021-09417-8.html
   My bibliography  Save this article

Integrated production and maintenance planning under uncertain demand with concurrent learning of yield rate

Author

Listed:
  • Huidong Zhang

    (University of Texas at Austin)

  • Dragan Djurdjanovic

    (University of Texas at Austin)

Abstract

Strong interactions between decisions in the maintenance and production scheduling domains, and their impacts on the equipment yield rates necessitate maintenance and production decisions being optimized concurrently, with considerations of yield dependencies on the equipment conditions and production rates. This paper proposes an integrated decision-making policy for production and maintenance operations on a single machine under uncertain demand, with concurrent considerations and learning of yield dependencies on the equipment conditions and production rates. This policy is obtained through a two-stage stochastic programming model, which considers the variable demand, machine degradation, and maintenance times. This model incorporates outsourcing decisions and operational decisions regarding reworking, scraping of imperfect products to ensure the demand is adequately met. A closed-form reinforcement learning method is utilized to learn yield dependencies. Simulations confirm the necessity of yield learning and show the proposed method outperforms the traditional, fragmented approaches where the effects of production rates and machine conditions on the resulting yield rates are not considered. The two-stage stochastic setting is demonstrated by comparing with the traditional one-stage deterministic approach, where decisions are made based on the expected demand and production performance, with scrapping, reworking, and outsourcing decisions established before the demand and production performance are observed.

Suggested Citation

  • Huidong Zhang & Dragan Djurdjanovic, 2022. "Integrated production and maintenance planning under uncertain demand with concurrent learning of yield rate," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 429-450, June.
  • Handle: RePEc:spr:flsman:v:34:y:2022:i:2:d:10.1007_s10696-021-09417-8
    DOI: 10.1007/s10696-021-09417-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-021-09417-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-021-09417-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Sloan, 2008. "Simultaneous determination of production and maintenance schedules using in‐line equipment condition and yield information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(2), pages 116-129, March.
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    4. T W Sloan, 2004. "A periodic review production and maintenance model with random demand, deteriorating equipment, and binomial yield," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(6), pages 647-656, June.
    5. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    6. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    7. Tevfik Aktekin & Tahir Ekin, 2016. "Stochastic call center staffing with uncertain arrival, service and abandonment rates: A Bayesian perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 460-478, September.
    8. Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2014. "Augmented Markov Chain Monte Carlo Simulation for Two-Stage Stochastic Programs with Recourse," Decision Analysis, INFORMS, vol. 11(4), pages 250-264, December.
    9. Tahir Ekin & Nicholas G. Polson & Refik Soyer, 2017. "Augmented nested sampling for stochastic programs with recourse and endogenous uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 613-627, December.
    10. Terwiesch, Christian & E. Bohn, Roger, 2001. "Learning and process improvement during production ramp-up," International Journal of Production Economics, Elsevier, vol. 70(1), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    2. Ekin, Tahir & Aktekin, Tevfik, 2021. "Decision making under uncertain and dependent system rates in service systems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 335-348.
    3. Kazaz, Burak & Sloan, Thomas W., 2013. "The impact of process deterioration on production and maintenance policies," European Journal of Operational Research, Elsevier, vol. 227(1), pages 88-100.
    4. Tahir Ekin & Stephen Walker & Paul Damien, 2023. "Augmented simulation methods for discrete stochastic optimization with recourse," Annals of Operations Research, Springer, vol. 320(2), pages 771-793, January.
    5. Sharafali, Moosa & Tarakci, Hakan & Kulkarni, Shailesh & Razack Shahul Hameed, Raja Abdul, 2019. "Optimal delivery due date for a supplier with an unreliable machine under outsourced maintenance," International Journal of Production Economics, Elsevier, vol. 208(C), pages 53-68.
    6. Thomas Sloan, 2008. "Simultaneous determination of production and maintenance schedules using in‐line equipment condition and yield information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(2), pages 116-129, March.
    7. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    9. Kutzner, Sarah C. & Kiesmüller, Gudrun P., 2013. "Optimal control of an inventory-production system with state-dependent random yield," European Journal of Operational Research, Elsevier, vol. 227(3), pages 444-452.
    10. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    11. Toon Vanderschueren & Robert Boute & Tim Verdonck & Bart Baesens & Wouter Verbeke, 2022. "Prescriptive maintenance with causal machine learning," Papers 2206.01562, arXiv.org.
    12. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    13. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Salvatore T. March & Gary D. Scudder, 2019. "Predictive maintenance: strategic use of IT in manufacturing organizations," Information Systems Frontiers, Springer, vol. 21(2), pages 327-341, April.
    15. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    16. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    17. Karamatsoukis, C.C. & Kyriakidis, E.G., 2010. "Optimal maintenance of two stochastically deteriorating machines with an intermediate buffer," European Journal of Operational Research, Elsevier, vol. 207(1), pages 297-308, November.
    18. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    19. Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Zhang, Nan & Cai, Kaiquan & Deng, Yingjun & Zhang, Jun, 2024. "Joint optimization of condition-based maintenance and condition-based production of a single equipment considering random yield and maintenance delay," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:34:y:2022:i:2:d:10.1007_s10696-021-09417-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.