IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v137y2012i2p284-291.html
   My bibliography  Save this article

Experimental results for the allocation of buffers in closed serial production lines

Author

Listed:
  • Staley, Dan R.
  • Kim, David S.

Abstract

In this paper, the description and results of simulation experiments investigating buffer allocation in closed serial production lines are presented. The production lines studied consist of either reliable or unreliable workstations, and have asynchronous movement of jobs. The experimental results are used to demonstrate a buffer allocation decomposition result for closed production lines, and also provide evidence that optimal buffer allocations in closed lines are less sensitive to bottleneck severity than in open production lines. Another key finding is that buffer allocation decisions have more impact in closed reliable production lines than in closed unreliable production lines.

Suggested Citation

  • Staley, Dan R. & Kim, David S., 2012. "Experimental results for the allocation of buffers in closed serial production lines," International Journal of Production Economics, Elsevier, vol. 137(2), pages 284-291.
  • Handle: RePEc:eee:proeco:v:137:y:2012:i:2:p:284-291
    DOI: 10.1016/j.ijpe.2012.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312000692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    2. Frederick S. Hillier & Kut C. So & Ronald W. Boling, 1993. "Notes: Toward Characterizing the Optimal Allocation of Storage Space in Production Line Systems with Variable Processing Times," Management Science, INFORMS, vol. 39(1), pages 126-133, January.
    3. Eginhard J. Muth, 1979. "The Reversibility Property of Production Lines," Management Science, INFORMS, vol. 25(2), pages 152-158, February.
    4. Richard Conway & William Maxwell & John O. McClain & L. Joseph Thomas, 1988. "The Role of Work-in-Process Inventory in Serial Production Lines," Operations Research, INFORMS, vol. 36(2), pages 229-241, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
    2. Guan Wang & Yang Woo Shin & Dug Hee Moon, 2016. "Comparison of three flow line layouts with unreliable machines and profit maximization," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 669-693, December.
    3. Sabry Shaaban & Tom Mcnamara & Sarah Hudson, 2015. "The impact of failure, repair and joint imbalance of processing time means & buffer sizes on the performance of unpaced production lines," Post-Print hal-01205567, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    2. Bertazzi, Luca, 2011. "Determining the optimal dimension of a work-in-process storage area," International Journal of Production Economics, Elsevier, vol. 131(2), pages 483-489, June.
    3. Kirkavak, Nureddin & Dincer, Cemal, 1999. "The general behavior of pull production systems: The allocation problems," European Journal of Operational Research, Elsevier, vol. 119(2), pages 479-494, December.
    4. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    5. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    6. Opher Baron & Oded Berman & Dmitry Krass & Jianfu Wang, 2014. "Using Strategic Idleness to Improve Customer Service Experience in Service Networks," Operations Research, INFORMS, vol. 62(1), pages 123-140, February.
    7. Chen, Jiaqiong & Askin, Ronald G., 2006. "Throughput maximization in serial production lines with worksharing," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 88-101, February.
    8. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    9. Tang, Kwei & Gong, Linguo & Chang, Dong-Shang, 2003. "Optimal process control policies under a time-varying cost structure," European Journal of Operational Research, Elsevier, vol. 149(1), pages 197-210, August.
    10. Lutz, Christian M. & Roscoe Davis, K. & Sun, Minghe, 1998. "Determining buffer location and size in production lines using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 301-316, April.
    11. Chen-Yang Cheng & Shu-Fen Li & Chia-Leng Lee & Ranon Jientrakul & Chumpol Yuangyai, 2022. "A Comparative Study of Unbalanced Production Lines Using Simulation Modeling: A Case Study for Solar Silicon Manufacturing," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    12. Lauren Xiaoyuan Lu & Jan A. Van Mieghem & R. Canan Savaskan, 2009. "Incentives for Quality Through Endogenous Routing," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 254-273, July.
    13. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    14. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    15. Kamburowski, J., 1997. "The nature of simplicity of Johnson's algorithm," Omega, Elsevier, vol. 25(5), pages 581-584, October.
    16. O'Connell, Neil & Yor, Marc, 2001. "Brownian analogues of Burke's theorem," Stochastic Processes and their Applications, Elsevier, vol. 96(2), pages 285-304, December.
    17. Federico Nuñez-Piña & Joselito Medina-Marin & Juan Carlos Seck-Tuoh-Mora & Norberto Hernandez-Romero & Eva Selene Hernandez-Gress, 2018. "Modeling of Throughput in Production Lines Using Response Surface Methodology and Artificial Neural Networks," Complexity, Hindawi, vol. 2018, pages 1-10, January.
    18. Hyoungtae Kim & Sungsoo Park, 1999. "Optimality of the Symmetric Workload Allocation in a Single-Server Flow Line System," Management Science, INFORMS, vol. 45(3), pages 449-451, March.
    19. Suresh Chand & Ting Zeng, 2001. "A Comparison of U-Line and Straight-Line Performances Under Stochastic Task Times," Manufacturing & Service Operations Management, INFORMS, vol. 3(2), pages 138-150, January.
    20. Steven J. Erlebacher & Medini R. Singh, 1999. "Optimal Variance Structures and Performance Improvement of Synchronous Assembly Lines," Operations Research, INFORMS, vol. 47(4), pages 601-618, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:137:y:2012:i:2:p:284-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.