IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v29y2021i4d10.1007_s10100-019-00670-9.html
   My bibliography  Save this article

Performance of merging lines with uneven buffer capacity allocation: the effects of unreliability under different inventory-related costs

Author

Listed:
  • Sabry Shaaban

    (ESC La Rochelle)

  • Rodrigo Romero-Silva

    (Universidad Panamericana
    Vrije Universiteit Amsterdam
    Amsterdan University of Applied Sciences)

Abstract

This simulation study investigates whether machine efficiency, mean time to failure (MTTF) and mean time to repair (MTTR) significantly affect the performance of uneven buffer capacity allocation patterns for merging lines. Also studied is the trade-off between increasing throughput via bigger buffers and their associated inventory-related costs, since previous studies have shown that higher overall buffer capacity and higher average inventory content result in higher throughput. Results suggest that an ascending buffer allocation pattern (concentrating buffer capacity towards the end of the line) produces higher throughput in shorter, more unreliable lines; whereas the balanced pattern shows better performance in longer, more reliable lines. Increasing average buffer capacity per station and/or having higher average buffer content was found to be more cost-effective in lines with lower machine inefficiency, shorter MTTF and MTTR, and longer lines. Results differed between reliable and unreliable lines since reliable lines were particularly penalised by buffer capacity investiment/maintenance costs due to a relatively low increase in throughput resulting from the addition of extra buffer capacity.

Suggested Citation

  • Sabry Shaaban & Rodrigo Romero-Silva, 2021. "Performance of merging lines with uneven buffer capacity allocation: the effects of unreliability under different inventory-related costs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1253-1288, December.
  • Handle: RePEc:spr:cejnor:v:29:y:2021:i:4:d:10.1007_s10100-019-00670-9
    DOI: 10.1007/s10100-019-00670-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-019-00670-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-019-00670-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lau, Hon-Shiang, 1992. "On balancing variances of station processing times in unpaced lines," European Journal of Operational Research, Elsevier, vol. 61(3), pages 345-356, September.
    2. Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
    3. Tom Mcnamara & Sabry Shaaban & Sarah Hudson, 2016. "Fifty years of the bowl phenomenon," Post-Print hal-02010636, HAL.
    4. Yang Liu & Jingshan Li, 2010. "Split and merge production systems: performance analysis and structural properties," IISE Transactions, Taylor & Francis Journals, vol. 42(6), pages 422-434.
    5. Rodrigo Romero-Silva & Sabry Shaaban, 2019. "Influence of unbalanced operation time means and uneven buffer allocation on unreliable merging assembly line efficiency," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1645-1666, March.
    6. Yuan, Xue-Ming & Liu, Liming, 2005. "Performance analysis of assembly systems with unreliable machines and finite buffers," European Journal of Operational Research, Elsevier, vol. 161(3), pages 854-871, March.
    7. Mark Hillier, 2013. "Designing unpaced production lines to optimize throughput and work-in-process inventory," IISE Transactions, Taylor & Francis Journals, vol. 45(5), pages 516-527.
    8. Sarah Hudson & Tom McNamara & Sabry Shaaban, 2015. "Unbalanced lines: where are we now?," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1895-1911, March.
    9. Kalir, Adar A. & Sarin, Subhash C., 2009. "A method for reducing inter-departure time variability in serial production lines," International Journal of Production Economics, Elsevier, vol. 120(2), pages 340-347, August.
    10. Erkut Sönmez & Alan Scheller-Wolf & Nicola Secomandi, 2017. "An Analytical Throughput Approximation for Closed Fork/Join Networks," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 251-267, May.
    11. Richard Conway & William Maxwell & John O. McClain & L. Joseph Thomas, 1988. "The Role of Work-in-Process Inventory in Serial Production Lines," Operations Research, INFORMS, vol. 36(2), pages 229-241, April.
    12. Yonit Barron, 2015. "Mean Sojourn Time in Multi Stage Fork-Join Network: The Effect of Synchronization and Structure," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 6(3), pages 80-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonit Barron, 2023. "The Delay Time Profile of Multistage Networks with Synchronization," Mathematics, MDPI, vol. 11(14), pages 1-30, July.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romero-Silva, Rodrigo & Shaaban, Sabry & Marsillac, Erika & Laarraf, Zouhair, 2021. "The impact of unequal processing time variability on reliable and unreliable merging line performance," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Federica Costa & Matthias Thürer & Alberto Portioli-Staudacher, 2023. "Heterogeneous worker multi-functionality and efficiency in dual resource constrained manufacturing lines: an assessment by simulation," Operations Management Research, Springer, vol. 16(3), pages 1476-1489, September.
    3. Tiacci, Lorenzo, 2015. "Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times," International Journal of Production Economics, Elsevier, vol. 162(C), pages 201-215.
    4. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    5. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    6. Opher Baron & Oded Berman & Dmitry Krass & Jianfu Wang, 2014. "Using Strategic Idleness to Improve Customer Service Experience in Service Networks," Operations Research, INFORMS, vol. 62(1), pages 123-140, February.
    7. Chen, Jiaqiong & Askin, Ronald G., 2006. "Throughput maximization in serial production lines with worksharing," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 88-101, February.
    8. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    9. Tang, Kwei & Gong, Linguo & Chang, Dong-Shang, 2003. "Optimal process control policies under a time-varying cost structure," European Journal of Operational Research, Elsevier, vol. 149(1), pages 197-210, August.
    10. Lutz, Christian M. & Roscoe Davis, K. & Sun, Minghe, 1998. "Determining buffer location and size in production lines using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 301-316, April.
    11. Chen-Yang Cheng & Shu-Fen Li & Chia-Leng Lee & Ranon Jientrakul & Chumpol Yuangyai, 2022. "A Comparative Study of Unbalanced Production Lines Using Simulation Modeling: A Case Study for Solar Silicon Manufacturing," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    12. Lauren Xiaoyuan Lu & Jan A. Van Mieghem & R. Canan Savaskan, 2009. "Incentives for Quality Through Endogenous Routing," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 254-273, July.
    13. Bertazzi, Luca, 2011. "Determining the optimal dimension of a work-in-process storage area," International Journal of Production Economics, Elsevier, vol. 131(2), pages 483-489, June.
    14. Dauzère-Pérès, Stéphane & Hassoun, Michael, 2020. "On the importance of variability when managing metrology capacity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 267-276.
    15. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    16. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    17. Guan Wang & Yang Woo Shin & Dug Hee Moon, 2016. "Comparison of three flow line layouts with unreliable machines and profit maximization," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 669-693, December.
    18. Steven J. Erlebacher & Medini R. Singh, 1999. "Optimal Variance Structures and Performance Improvement of Synchronous Assembly Lines," Operations Research, INFORMS, vol. 47(4), pages 601-618, August.
    19. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    20. Hurley, Simon F. & Clay Whybark, D., 1999. "Inventory and capacity trade-offs in a manufacturing cell," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 203-212, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:29:y:2021:i:4:d:10.1007_s10100-019-00670-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.