IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v28y2016i1d10.1007_s10696-014-9204-0.html
   My bibliography  Save this article

Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation

Author

Listed:
  • Taesik Lee

    (KAIST)

  • Hayong Shin

    (KAIST)

Abstract

Designing effective mitigation strategies against influenza outbreak requires an accurate prediction of a disease’s future course of spreading. Real time information such as syndromic surveillance data and influenza-like-illness (ILI) reports by clinicians can be used to generate estimates of the current state of spreading of a disease. Syndromic surveillance data are immediately available, in contrast to ILI reports that require data collection and processing. On the other hand, they are less credible than ILI data because they are essentially behavioral responses from a community. In this paper, we present a method to combine immediately-available-but-less-reliable syndromic surveillance data with reliable-but-time-delayed ILI data. This problem is formulated as a non-linear stochastic filtering problem, and solved by a particle filtering method. Our experimental results from hypothetical pandemic scenarios show that state estimation is improved by utilizing both sets of data compared to when using only one set. However, the amount of improvement depends on the relative credibility and length of delay in ILI data. An analysis for a linear, Gaussian case is presented to support the results observed in the experiments.

Suggested Citation

  • Taesik Lee & Hayong Shin, 2016. "Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 233-253, June.
  • Handle: RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-014-9204-0
    DOI: 10.1007/s10696-014-9204-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-014-9204-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-014-9204-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cynthia Chew & Gunther Eysenbach, 2010. "Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-13, November.
    2. Jimmy Boon Som Ong & Mark I-Cheng Chen & Alex R Cook & Huey Chyi Lee & Vernon J Lee & Raymond Tzer Pin Lin & Paul Ananth Tambyah & Lee Gan Goh, 2010. "Real-Time Epidemic Monitoring and Forecasting of H1N1-2009 Using Influenza-Like Illness from General Practice and Family Doctor Clinics in Singapore," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    3. Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
    4. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    5. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    6. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ece Zeliha Demirci & Nesim Kohen Erkip, 2020. "Designing intervention scheme for vaccine market: a bilevel programming approach," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 453-485, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    2. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    3. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    4. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    5. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    6. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    7. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    8. Jurić, Tado, 2021. "Google Trends as a Method to Predict New COVID-19 Cases and Socio-Psychological Consequences of the Pandemic," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(forthcomi).
    9. Valentina Lorenzoni & Gianni Andreozzi & Andrea Bazzani & Virginia Casigliani & Salvatore Pirri & Lara Tavoschi & Giuseppe Turchetti, 2022. "How Italy Tweeted about COVID-19: Detecting Reactions to the Pandemic from Social Media," IJERPH, MDPI, vol. 19(13), pages 1-14, June.
    10. Zhengming Xing & Bradley Nicholson & Monica Jimenez & Timothy Veldman & Lori Hudson & Joseph Lucas & David Dunson & Aimee K. Zaas & Christopher W. Woods & Geoffrey S. Ginsburg & Lawrence Carin, 2014. "Bayesian modeling of temporal properties of infectious disease in a college student population," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1358-1382, June.
    11. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    12. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    13. Amir Hassan Zadeh & Hamed M. Zolbanin & Ramesh Sharda & Dursun Delen, 2019. "Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis," Information Systems Frontiers, Springer, vol. 21(4), pages 743-760, August.
    14. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    15. Mostafa Abbas & Thomas B. Morland & Eric S. Hall & Yasser EL-Manzalawy, 2021. "Associations between Google Search Trends for Symptoms and COVID-19 Confirmed and Death Cases in the United States," IJERPH, MDPI, vol. 18(9), pages 1-24, April.
    16. Baek, Changryong & Davis, Richard A. & Pipiras, Vladas, 2017. "Sparse seasonal and periodic vector autoregressive modeling," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 103-126.
    17. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    18. Manuel Hermosilla & Jian Ni & Haizhong Wang & Jin Zhang, 2023. "Leveraging the E-commerce footprint for the surveillance of healthcare utilization," Health Care Management Science, Springer, vol. 26(4), pages 604-625, December.
    19. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    20. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:1:d:10.1007_s10696-014-9204-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.