IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i6p1358-1382.html
   My bibliography  Save this article

Bayesian modeling of temporal properties of infectious disease in a college student population

Author

Listed:
  • Zhengming Xing
  • Bradley Nicholson
  • Monica Jimenez
  • Timothy Veldman
  • Lori Hudson
  • Joseph Lucas
  • David Dunson
  • Aimee K. Zaas
  • Christopher W. Woods
  • Geoffrey S. Ginsburg
  • Lawrence Carin

Abstract

A Bayesian statistical model is developed for analysis of the time-evolving properties of infectious disease, with a particular focus on viruses. The model employs a latent semi-Markovian state process, and the state-transition statistics are driven by three terms: (i) a general time-evolving trend of the overall population, (ii) a semi-periodic term that accounts for effects caused by the days of the week, and (iii) a regression term that relates the probability of infection to covariates (here, specifically, to the Google Flu Trends data). Computations are performed using Markov Chain Monte Carlo sampling. Results are presented using a novel data set: daily self-reported symptom scores from hundreds of Duke University undergraduate students, collected over three academic years. The illnesses associated with these students are (imperfectly) labeled using real-time (RT) polymerase chain reaction (PCR) testing for several viruses, and gene-expression data were also analyzed. The statistical analysis is performed on the daily, self-reported symptom scores, and the RT PCR and gene-expression data are employed for analysis and interpretation of the model results.

Suggested Citation

  • Zhengming Xing & Bradley Nicholson & Monica Jimenez & Timothy Veldman & Lori Hudson & Joseph Lucas & David Dunson & Aimee K. Zaas & Christopher W. Woods & Geoffrey S. Ginsburg & Lawrence Carin, 2014. "Bayesian modeling of temporal properties of infectious disease in a college student population," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1358-1382, June.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1358-1382
    DOI: 10.1080/02664763.2013.870138
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.870138
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.870138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    2. Yang, Yang & Halloran, M. Elizabeth & Daniels, Michael J. & Longini, Ira M. & Burke, Donald S. & Cummings, Derek A. T., 2010. "Modeling Competing Infectious Pathogens From a Bayesian Perspective: Application to Influenza Studies With Incomplete Laboratory Results," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1310-1322.
    3. Vanja Dukic & Hedibert F. Lopes & Nicholas G. Polson, 2012. "Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1410-1426, December.
    4. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    2. Amir Hassan Zadeh & Hamed M. Zolbanin & Ramesh Sharda & Dursun Delen, 2019. "Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis," Information Systems Frontiers, Springer, vol. 21(4), pages 743-760, August.
    3. Taesik Lee & Hayong Shin, 2016. "Combining syndromic surveillance and ILI data using particle filter for epidemic state estimation," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 233-253, June.
    4. Mostafa Abbas & Thomas B. Morland & Eric S. Hall & Yasser EL-Manzalawy, 2021. "Associations between Google Search Trends for Symptoms and COVID-19 Confirmed and Death Cases in the United States," IJERPH, MDPI, vol. 18(9), pages 1-24, April.
    5. Baek, Changryong & Davis, Richard A. & Pipiras, Vladas, 2017. "Sparse seasonal and periodic vector autoregressive modeling," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 103-126.
    6. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    7. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    8. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    9. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    10. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    11. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    12. Yangkun Huang & Xiaoping Xu & Sini Su, 2021. "Diverging from News Media: An Exploratory Study on the Changing Dynamics between Media and Public Attention on Cancer in China from 2011–2020," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    13. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    14. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    15. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    16. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    17. Tobias Preis & Federico Botta & Helen Susannah Moat, 2020. "Sensing global tourism numbers with millions of publicly shared online photographs," Environment and Planning A, , vol. 52(3), pages 471-477, May.
    18. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    19. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    20. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:6:p:1358-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.