IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v4y2000i2p161-187.html
   My bibliography  Save this article

Superreplication in stochastic volatility models and optimal stopping

Author

Listed:
  • RØdiger Frey

    (Swiss Banking Institute, University of Zurich, Zurich, Plattenstrasse 14, CH-8032 Zurich, Switzerland Manuscript)

Abstract

In this paper we discuss the superreplication of derivatives in a stochastic volatility model under the additional assumption that the volatility follows a bounded process. We characterize the value process of our superhedging strategy by an optimal-stopping problem in the context of the Black-Scholes model which is similar to the optimal stopping problem that arises in the pricing of American-type derivatives. Our proof is based on probabilistic arguments. We study the minimality of these superhedging strategies and discuss PDE-characterizations of the value function of our superhedging strategy. We illustrate our approach by examples and simulations.

Suggested Citation

  • RØdiger Frey, 2000. "Superreplication in stochastic volatility models and optimal stopping," Finance and Stochastics, Springer, vol. 4(2), pages 161-187.
  • Handle: RePEc:spr:finsto:v:4:y:2000:i:2:p:161-187
    Note: received: June 1998; final version received: April 1999
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/0004002/00040161.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rüdiger Frey & Carlos A. Sin, 1999. "Bounds on European Option Prices under Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 97-116, April.
    2. Patrick Jaillet & Damien Lamberton & Bernard Lapeyre, 1990. "Variational inequalities and the pricing of American options," Post-Print hal-01667008, HAL.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    5. Maurizio Pratelli & Sabrina Mulinacci, 1998. "Functional convergence of Snell envelopes: Applications to American options approximations," Finance and Stochastics, Springer, vol. 2(3), pages 311-327.
    6. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    7. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    8. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    9. Freddy Delbaen, 1992. "Representing Martingale Measures When Asset Prices Are Continuous And Bounded," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 107-130, April.
    10. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    11. Jérôme Barraquand & Thierry Pudet, 1996. "Pricing Of American Path‐Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51, January.
    12. Marco Avellaneda & Antonio ParAS, 1996. "Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 21-52.
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    14. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    15. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Fernholz & Ioannis Karatzas, 2012. "Optimal arbitrage under model uncertainty," Papers 1202.2999, arXiv.org.
    2. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    3. Wei Chen, 2013. "G-Doob-Meyer Decomposition and its Application in Bid-Ask Pricing for American Contingent Claim Under Knightian Uncertainty," Papers 1401.0677, arXiv.org.
    4. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    5. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    6. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Post-Print hal-03460952, HAL.
    7. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    8. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers hal-03460952, HAL.
    9. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    10. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers Main hal-03460952, HAL.
    11. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    12. Huang, Haishi, 2010. "Convertible Bonds: Risks and Optimal Strategies," Bonn Econ Discussion Papers 07/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).
    13. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    14. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    15. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    16. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    17. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    18. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    19. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel Vanden, 2006. "Exact Superreplication Strategies for a Class of Derivative Assets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 61-87.
    2. Rüdiger Frey & Carlos A. Sin, 1999. "Bounds on European Option Prices under Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 97-116, April.
    3. repec:dau:papers:123456789/5374 is not listed on IDEAS
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    6. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    7. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    8. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    9. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    10. Mykland, Per Aslak, 2019. "Combining statistical intervals and market prices: The worst case state price distribution," Journal of Econometrics, Elsevier, vol. 212(1), pages 272-285.
    11. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    12. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    13. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    14. P. A. Forsyth & K. R. Vetzal & R. Zvan, 1999. "A finite element approach to the pricing of discrete lookbacks with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 87-106.
    15. Samuel N. Cohen & Martin Tegn'er, 2018. "European Option Pricing with Stochastic Volatility models under Parameter Uncertainty," Papers 1807.03882, arXiv.org.
    16. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    17. Nicole Branger & Antje Mahayni, 2011. "Tractable hedging with additional hedge instruments," Review of Derivatives Research, Springer, vol. 14(1), pages 85-114, April.
    18. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    19. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    20. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    21. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.

    More about this item

    Keywords

    Stochastic volatility; optimal stopping; incomplete markets; superreplication;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:4:y:2000:i:2:p:161-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.