IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v6y1999i2p87-106.html
   My bibliography  Save this article

A finite element approach to the pricing of discrete lookbacks with stochastic volatility

Author

Listed:
  • P. A. Forsyth
  • K. R. Vetzal
  • R. Zvan

Abstract

Finite element methods are described for valuing lookback options under stochastic volatility. Particular attention is paid to the method for handling the boundary equations. For some boundaries, the equations reduce to first-order hyperbolic equations which must be discretized to ensure that outgoing waves are correctly modelled. Some example computations show that for certain choices of parameters, the option price computed for a lookback under stochastic volatility can differ from the price under the usual constant volatility assumption by as much as 35% (i.e. $7.30 compared with $5.45 for an at-the-money put), even though the models are calibrated so as to produce exactly the same price for an at-the-money vanilla European option with the same time remaining until expiry.

Suggested Citation

  • P. A. Forsyth & K. R. Vetzal & R. Zvan, 1999. "A finite element approach to the pricing of discrete lookbacks with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 87-106.
  • Handle: RePEc:taf:apmtfi:v:6:y:1999:i:2:p:87-106
    DOI: 10.1080/135048699334564
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048699334564
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048699334564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    6. M. A. H. Dempster & J. P. Hutton, 1997. "Fast numerical valuation of American, exotic and complex options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(1), pages 1-20.
    7. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    8. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    9. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    10. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    11. Jérôme Barraquand & Thierry Pudet, 1996. "Pricing Of American Path‐Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51, January.
    12. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    14. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. M. Pooley & P. A. Forsyth & K. R. Vetzal & R. B. Simpson, 2000. "Unstructured meshing for two asset barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 33-60.
    2. Fard, Farzad Alavi & Siu, Tak Kuen, 2013. "Pricing participating products with Markov-modulated jump–diffusion process: An efficient numerical PIDE approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 712-721.
    3. Carole Bernard & Junsen Tang, 2016. "Simplified Hedge For Path-Dependent Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-32, November.
    4. Garnadi, Agah D., 2017. "Valuasi Opsi Beli ({\it Call Options}) Eropa bervolatilitas Stokastik dengan menggunakan Modifikasi Metode Karakteristik dan Metode Elemen Hingga," INA-Rxiv fhbsx, Center for Open Science.
    5. Windcliff, H. & Vetzal, K. R. & Forsyth, P. A. & Verma, A. & Coleman, T. F., 2003. "An object-oriented framework for valuing shout options on high-performance computer architectures," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1133-1161, April.
    6. Bertram Düring & Michel Fournié & Ansgar Jüngel, 2003. "High Order Compact Finite Difference Schemes for a Nonlinear Black-Scholes Equation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 767-789.
    7. P. Forsyth & K. Vetzal & R. Zvan, 2002. "Convergence of numerical methods for valuing path-dependent options using interpolation," Review of Derivatives Research, Springer, vol. 5(3), pages 273-314, October.
    8. Simona Sanfelici, 2004. "Galerkin infinite element approximation for pricing barrier options and options with discontinuous payoff," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(2), pages 125-151, December.
    9. Gongqiu Zhang & Lingfei Li, 2021. "A General Approach for Lookback Option Pricing under Markov Models," Papers 2112.00439, arXiv.org.
    10. Farzad Alavi Fard, 2014. "Optimal Bid-Ask Spread in Limit-Order Books under Regime Switching Framework," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 33-48, November.
    11. Raahauge, Peter, 2004. "Higher-Order Finite Element Solutions of Option Prices," Working Papers 2004-5, Copenhagen Business School, Department of Finance.
    12. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    13. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    14. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    15. Rakhymzhan Kazbek & Yogi Erlangga & Yerlan Amanbek & Dongming Wei, 2023. "Valuation of the Convertible Bonds under Penalty TF model using Finite Element Method," Papers 2301.10734, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    3. Chateau, J. -P. & Dufresne, D., 2002. "The stochastic-volatility American put option of banks' credit line commitments:: Valuation and policy implications," International Review of Financial Analysis, Elsevier, vol. 11(2), pages 159-181.
    4. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Vicky Henderson & David Hobson, 2001. "Passport options with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 97-118.
    8. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    9. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    10. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    11. Christian Gourieroux & Razvan Sufana, 2004. "Derivative Pricing with Multivariate Stochastic Volatility : Application to Credit Risk," Working Papers 2004-31, Center for Research in Economics and Statistics.
    12. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    13. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    14. George J. Jiang, 2002. "Testing Option Pricing Models with Stochastic Volatility, Random Jumps and Stochastic Interest Rates," International Review of Finance, International Review of Finance Ltd., vol. 3(3‐4), pages 233-272, September.
    15. Huang, Yu Chuan & Chen, Shing Chun, 2002. "Warrants pricing: Stochastic volatility vs. Black-Scholes," Pacific-Basin Finance Journal, Elsevier, vol. 10(4), pages 393-409, September.
    16. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
    17. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Trading Patterns, Time Deformation and Stochastic Volatility in Foreign Exchange Markets," CIRANO Working Papers 95s-42, CIRANO.
    18. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    19. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    20. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:6:y:1999:i:2:p:87-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.