IDEAS home Printed from https://ideas.repec.org/p/hal/spmain/hal-03460952.html
   My bibliography  Save this paper

A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options

Author

Listed:
  • Alfred Galichon

    (ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique)

  • Pierre Henri-Labordère
  • Nizar Touzi

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset, and statically trade European call options for all possible strikes with some given maturity. This problem is classically approached by means of the Skorohod Embedding Problem (SEP). Instead, we provide a dual formulation which converts the superhedging problem into a continuous martingale optimal transportation problem. We then show that this formulation allows us to recover previously known results about lookback options. In particular, our methodology induces a new proof of the optimality of Azéma–Yor solution of the SEP for a certain class of lookback options. Unlike the SEP technique, our approach applies to a large class of exotics and is suitable for numerical approximation techniques.

Suggested Citation

  • Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers Main hal-03460952, HAL.
  • Handle: RePEc:hal:spmain:hal-03460952
    DOI: 10.1214/13-AAP925
    Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-03460952
    as

    Download full text from publisher

    File URL: https://sciencespo.hal.science/hal-03460952/document
    Download Restriction: no

    File URL: https://libkey.io/10.1214/13-AAP925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laurent Carraro & Nicole El Karoui & Jan Ob{l}'oj, 2009. "On Az\'ema-Yor processes, their optimal properties and the Bachelier-drawdown equation," Papers 0902.1328, arXiv.org, revised Sep 2012.
    2. RØdiger Frey, 2000. "Superreplication in stochastic volatility models and optimal stopping," Finance and Stochastics, Springer, vol. 4(2), pages 161-187.
    3. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    4. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    5. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    7. Karandikar, Rajeeva L., 1995. "On pathwise stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 11-18, May.
    8. A. M. G. Cox & David Hobson & Jan Ob{l}'oj, 2007. "Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping," Papers math/0702173, arXiv.org, revised Nov 2008.
    9. Dylan Possamai & Guillaume Royer & Nizar Touzi, 2013. "On the Robust superhedging of measurable claims," Papers 1302.1850, arXiv.org, revised Feb 2013.
    10. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Martingale Schrödinger bridges and optimal semistatic portfolios," Finance and Stochastics, Springer, vol. 27(1), pages 233-254, January.
    2. Linn Engstrom & Sigrid Kallblad & Johan Karlsson, 2024. "Computation of Robust Option Prices via Structured Multi-Marginal Martingale Optimal Transport," Papers 2406.09959, arXiv.org.
    3. Benjamin Jourdain & Gudmund Pammer, 2023. "An extension of martingale transport and stability in robust finance," Papers 2304.09551, arXiv.org.
    4. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," SciencePo Working papers Main hal-03936221, HAL.
    5. Alexander M. G. Cox & Annemarie M. Grass, 2023. "Robust option pricing with volatility term structure -- An empirical study for variance options," Papers 2312.09201, arXiv.org.
    6. Anton Kolotilin & Roberto Corrao & Alexander Wolitzky, 2022. "Persuasion with Non-Linear Preferences," Papers 2206.09164, arXiv.org, revised Aug 2022.
    7. Tongseok Lim, 2023. "Optimal exercise decision of American options under model uncertainty," Papers 2310.14473, arXiv.org, revised Nov 2023.
    8. Beatrice Acciaio & Antonio Marini & Gudmund Pammer, 2023. "Calibration of the Bass Local Volatility model," Papers 2311.14567, arXiv.org.
    9. Daniel Krv{s}ek & Gudmund Pammer, 2024. "General duality and dual attainment for adapted transport," Papers 2401.11958, arXiv.org, revised Nov 2024.
    10. Tongseok Lim, 2023. "Replication of financial derivatives under extreme market models given marginals," Papers 2307.00807, arXiv.org.
    11. Anton Kolotilin & Roberto Corrao & Alexander Wolitzky, 2023. "Persuasion and Matching: Optimal Productive Transport," Discussion Papers 2023-12, School of Economics, The University of New South Wales.
    12. Wiesel Johannes & Zhang Erica, 2023. "An optimal transport-based characterization of convex order," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-15, January.
    13. Alessandro Doldi & Marco Frittelli & Emanuela Rosazza Gianin, 2024. "On entropy martingale optimal transport theory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 1-42, June.
    14. Julio Backhoff-Veraguas & Gudmund Pammer & Walter Schachermayer, 2024. "The Gradient Flow of the Bass Functional in Martingale Optimal Transport," Papers 2407.18781, arXiv.org.
    15. Marcel Nutz & Johannes Wiesel, 2024. "On the Martingale Schr\"odinger Bridge between Two Distributions," Papers 2401.05209, arXiv.org.
    16. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    17. Joshua Zoen-Git Hiew & Tongseok Lim & Brendan Pass & Marcelo Cruz de Souza, 2023. "Geometry of vectorial martingale optimal transport and robust option pricing," Papers 2309.04947, arXiv.org, revised Sep 2023.
    18. Julio Backhoff-Veraguas & Gregoire Loeper & Jan Obloj, 2024. "Geometric Martingale Benamou-Brenier transport and geometric Bass martingales," Papers 2406.04016, arXiv.org.
    19. Marcel Nutz & Johannes Wiesel & Long Zhao, 2023. "Limits of semistatic trading strategies," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 185-205, January.
    20. Huy N. Chau & Masaaki Fukasawa & Miklós Rásonyi, 2022. "Super‐replication with transaction costs under model uncertainty for continuous processes," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1066-1085, October.
    21. Alfred Galichon, 2021. "The Unreasonable Effectiveness of Optimal Transport in Economics," Working Papers hal-03936221, HAL.
    22. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    23. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Post-Print hal-03460952, HAL.
    2. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2014. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," SciencePo Working papers hal-03460952, HAL.
    3. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    4. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    5. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    6. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    7. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    8. Romain Blanchard & Laurence Carassus, 2021. "Convergence of utility indifference prices to the superreplication price in a multiple‐priors framework," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 366-398, January.
    9. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    10. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc0ck8ecp is not listed on IDEAS
    11. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    12. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    13. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    14. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230, arXiv.org, revised Oct 2017.
    15. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    16. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363, arXiv.org.
    17. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    18. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    19. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    20. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.
    21. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    22. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    23. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    24. repec:dau:papers:123456789/5374 is not listed on IDEAS
    25. Cox, Alexander M.G. & Obłój, Jan, 2015. "On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3280-3300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:spmain:hal-03460952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Contact - Sciences Po Departement of Economics (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.