Functional convergence of Snell envelopes: Applications to American options approximations
Author
Abstract
Suggested Citation
Note: received: January 1996; final version received: July 1997
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Libo Li & Ruyi Liu & Marek Rutkowski, 2022. "Vulnerable European and American Options in a Market Model with Optional Hazard Process," Papers 2212.12860, arXiv.org.
- RØdiger Frey, 2000. "Superreplication in stochastic volatility models and optimal stopping," Finance and Stochastics, Springer, vol. 4(2), pages 161-187.
- Dietmar P.J. Leisen, 1997. "The Random-Time Binomial Model," Finance 9711005, University Library of Munich, Germany, revised 29 Nov 1998.
- Ross A. Maller & David H. Solomon & Alex Szimayer, 2006. "A Multinomial Approximation For American Option Prices In Lévy Process Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 613-633, October.
- Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Søjmark, 2024. "Functional central limit theorems for rough volatility," Finance and Stochastics, Springer, vol. 28(3), pages 615-661, July.
- repec:dau:papers:123456789/5374 is not listed on IDEAS
- Yan Dolinsky, 2009. "Applications of weak convergence for hedging of game options," Papers 0908.3661, arXiv.org, revised Nov 2010.
- Horvath, Blanka & Jacquier, Antoine & Muguruza, Aitor & Søjmark, Andreas, 2024. "Functional central limit theorems for rough volatility," LSE Research Online Documents on Economics 122848, London School of Economics and Political Science, LSE Library.
- Szimayer, Alex & Maller, Ross A., 2007. "Finite approximation schemes for Lévy processes, and their application to optimal stopping problems," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1422-1447, October.
- Blanka Horvath & Antoine Jacquier & Aitor Muguruza & Andreas Sojmark, 2017. "Functional central limit theorems for rough volatility," Papers 1711.03078, arXiv.org, revised Nov 2023.
- Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
- Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.
More about this item
Keywords
American options; Snell envelopes; convergence in distribution; optimal stopping times;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:2:y:1998:i:3:p:311-327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.