IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v27y2017i4p988-1012.html
   My bibliography  Save this article

On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints

Author

Listed:
  • Erhan Bayraktar
  • Zhou Zhou

Abstract

We consider the fundamental theorem of asset pricing (FTAP) and hedging prices of options under non-dominated model uncertainty and portfolio constrains in discrete time. We first show that no arbitrage holds if and only if there exists some family of probability measures such that any admissible portfolio value process is a local super-martingale under these measures. We also get the non-dominated optional decomposition with constraints. From this decomposition, we get duality of the super-hedging prices of European options, as well as the sub- and super-hedging prices of American options. Finally, we get the FTAP and duality of super-hedging prices in a market where stocks are traded dynamically and options are traded statically.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Erhan Bayraktar & Zhou Zhou, 2017. "On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
  • Handle: RePEc:bla:mathfi:v:27:y:2017:i:4:p:988-1012
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/mafi.2017.27.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Yu-Jui Huang & Zhou Zhou, 2013. "On hedging American options under model uncertainty," Papers 1309.2982, arXiv.org, revised Apr 2015.
    2. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fontana, Claudio & Runggaldier, Wolfgang J., 2021. "Arbitrage concepts under trading restrictions in discrete-time financial markets," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 66-80.
    2. Alexander M. G. Cox & Zhaoxu Hou & Jan Obloj, 2014. "Robust pricing and hedging under trading restrictions and the emergence of local martingale models," Papers 1406.0551, arXiv.org, revised Jun 2015.
    3. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    4. Nuno Azevedo & Diogo Pinheiro & Stylianos Xanthopoulos & Athanasios Yannacopoulos, 2016. "Who would invest only in the risk-free asset?," Papers 1608.02446, arXiv.org.
    5. Sergey Smirnov, 2019. "A Guaranteed Deterministic Approach to Superhedging—The Case of Convex Payoff Functions on Options," Mathematics, MDPI, vol. 7(12), pages 1-19, December.
    6. Laurence Carassus & Jan Obloj & Johannes Wiesel, 2018. "The robust superreplication problem: a dynamic approach," Papers 1812.11201, arXiv.org, revised Feb 2019.
    7. Zhaoxu Hou & Jan Obloj, 2015. "On robust pricing-hedging duality in continuous time," Papers 1503.02822, arXiv.org, revised Jul 2015.
    8. Laurence Carassus & Johannes Wiesel, 2023. "Strategies with minimal norm are optimal for expected utility maximization under high model ambiguity," Papers 2306.01503, arXiv.org, revised Jan 2024.
    9. Julien Guyon & Romain Menegaux & Marcel Nutz, 2017. "Bounds for VIX futures given S&P 500 smiles," Finance and Stochastics, Springer, vol. 21(3), pages 593-630, July.
    10. Beatrice Acciaio & Martin Larsson, 2015. "Semi-static completeness and robust pricing by informed investors," Papers 1510.01890, arXiv.org, revised Sep 2016.
    11. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    12. Julien Guyon & Romain Menegaux & Marcel Nutz, 2016. "Bounds for VIX Futures given S&P 500 Smiles," Papers 1609.05832, arXiv.org, revised Jun 2017.
    13. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    14. Jan Obloj & Johannes Wiesel, 2018. "A unified Framework for Robust Modelling of Financial Markets in discrete time," Papers 1808.06430, arXiv.org, revised Dec 2019.
    15. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    16. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    17. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    18. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    19. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    20. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    21. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    22. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, December.
    23. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    24. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    25. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    2. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    3. Andrea Attar & Thomas Mariotti & François Salanié, 2021. "Entry-Proofness and Discriminatory Pricing under Adverse Selection," American Economic Review, American Economic Association, vol. 111(8), pages 2623-2659, August.
    4. Askoura, Youcef & Billot, Antoine, 2021. "Social decision for a measure society," Journal of Mathematical Economics, Elsevier, vol. 94(C).
    5. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    6. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    7. Duggan, John, 2011. "General conditions for the existence of maximal elements via the uncovered set," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 755-759.
    8. Eduardo Perez & Delphine Prady, 2012. "Complicating to Persuade?," Working Papers hal-03583827, HAL.
    9. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    10. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    11. He, Wei & Yannelis, Nicholas C., 2015. "Equilibrium theory under ambiguity," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 86-95.
    12. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    13. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    14. Jeongwoo Lee & Jaeok Park, 2019. "Preemptive Entry in Sequential Auctions with Participation Cost," Working papers 2019rwp-141, Yonsei University, Yonsei Economics Research Institute.
    15. Sudhir A. Shah, 2016. "The Generalized Arrow-Pratt Coefficient," Working Papers id:10795, eSocialSciences.
    16. Luçon, Eric, 2020. "Quenched asymptotics for interacting diffusions on inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6783-6842.
    17. Lashi Bandara & Paul Bryan, 2020. "Heat kernels and regularity for rough metrics on smooth manifolds," Mathematische Nachrichten, Wiley Blackwell, vol. 293(12), pages 2255-2270, December.
    18. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    19. Attar, Andrea & Mariotti, Thomas & Salanié, François, 2019. "On competitive nonlinear pricing," Theoretical Economics, Econometric Society, vol. 14(1), January.
    20. Francesca Biagini & Alessandro Doldi & Jean-Pierre Fouque & Marco Frittelli & Thilo Meyer-Brandis, 2023. "Collective Arbitrage and the Value of Cooperation," Papers 2306.11599, arXiv.org, revised May 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:27:y:2017:i:4:p:988-1012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.