IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v15y2011i4p685-724.html
   My bibliography  Save this article

On the calibration of local jump-diffusion asset price models

Author

Listed:
  • S. Kindermann
  • P. Mayer

Abstract

No abstract is available for this item.

Suggested Citation

  • S. Kindermann & P. Mayer, 2011. "On the calibration of local jump-diffusion asset price models," Finance and Stochastics, Springer, vol. 15(4), pages 685-724, December.
  • Handle: RePEc:spr:finsto:v:15:y:2011:i:4:p:685-724
    DOI: 10.1007/s00780-011-0159-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00780-011-0159-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00780-011-0159-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denis Belomestny & Markus Reiß, 2006. "Spectral calibration of exponential Lévy models," Finance and Stochastics, Springer, vol. 10(4), pages 449-474, December.
    2. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    3. Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
    4. Ronald Lagnado & Stanley Osher, "undated". "A Technique for Calibrating Derivative Security Pricing Models: Numerical Solution of an Inverse Problem," Computing in Economics and Finance 1997 101, Society for Computational Economics.
    5. Peter Carr & Helyette Geman & Dilip Madan & Marc Yor, 2004. "From local volatility to local Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 581-588.
    6. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    7. Peter Carr & Alireza Javaheri, 2005. "The Forward Pde For European Options On Stocks With Fixed Fractional Jumps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 239-253.
    8. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    9. René Carmona & Sergey Nadtochiy, 2009. "Local volatility dynamic models," Finance and Stochastics, Springer, vol. 13(1), pages 1-48, January.
    10. Yves Achdou & Olivier Pironneau, 2005. "Numerical Procedure for Calibration of Volatility with American Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 201-241.
    11. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    12. Martin Schweizer & Johannes Wissel, 2008. "Term Structures Of Implied Volatilities: Absence Of Arbitrage And Existence Results," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 77-114, January.
    13. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    14. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    15. repec:dau:papers:123456789/1448 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinicius V. L. Albani & Jorge P. Zubelli, 2020. "A splitting strategy for the calibration of jump-diffusion models," Finance and Stochastics, Springer, vol. 24(3), pages 677-722, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kallsen & Paul Krühner, 2015. "On a Heath–Jarrow–Morton approach for stock options," Finance and Stochastics, Springer, vol. 19(3), pages 583-615, July.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    3. René Carmona & Sergey Nadtochiy, 2012. "Tangent Lévy market models," Finance and Stochastics, Springer, vol. 16(1), pages 63-104, January.
    4. Rene Carmona & Yi Ma & Sergey Nadtochiy, 2015. "Simulation of Implied Volatility Surfaces via Tangent Levy Models," Papers 1504.00334, arXiv.org.
    5. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    6. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    7. Anja Richter & Josef Teichmann, 2014. "Discrete Time Term Structure Theory and Consistent Recalibration Models," Papers 1409.1830, arXiv.org.
    8. Mehdi El Amrani & Antoine Jacquier & Claude Martini, 2019. "Dynamics of symmetric SSVI smiles and implied volatility bubbles," Papers 1909.10272, arXiv.org, revised Feb 2021.
    9. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    10. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    11. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    12. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    13. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    14. Henrik Hult & Filip Lindskog & Johan Nykvist, 2013. "A simple time-consistent model for the forward density process," Papers 1301.4869, arXiv.org.
    15. Jan Kallsen & Paul Kruhner, 2013. "On a Heath-Jarrow-Morton approach for stock options," Papers 1305.5621, arXiv.org, revised Aug 2013.
    16. Beissner, Patrick & Rosazza Gianin, Emanuela, 2018. "The Term Structure of Sharpe Ratios and Arbitrage-Free Asset Pricing in Continuous Time," Rationality and Competition Discussion Paper Series 72, CRC TRR 190 Rationality and Competition.
    17. Petros Dellaportas & Aleksandar Mijatovi'c, 2014. "Arbitrage-free prediction of the implied volatility smile," Papers 1407.5528, arXiv.org.
    18. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    19. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    20. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.

    More about this item

    Keywords

    Local Lévy model; Jump diffusion processes; Ill-posed problem; Robust calibration; Inverse problem; Tikhonov regularization; 35R09; 60H10; 60H30; 65J22; 91B70; 91G60; C60; G13;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:15:y:2011:i:4:p:685-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.