Spectral calibration of exponential Lévy models
Author
Abstract
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
Suggested Citation
DOI: 10.1007/s00780-006-0021-5
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Belomestny, Denis & Reiß, Markus, 2006. "Spectral calibration of exponential Lévy Models [1]," SFB 649 Discussion Papers 2006-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Belomestny, Denis & Reiß, Markus, 2006. "Spectral calibration of exponential Lévy Models [2]," SFB 649 Discussion Papers 2006-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
References listed on IDEAS
- S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
- Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
- Ait-Sahalia, Yacine & Duarte, Jefferson, 2003.
"Nonparametric option pricing under shape restrictions,"
Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
- Yacine Ait-Sahalia & Jefferson Duarte, 2002. "Nonparametric Option Pricing under Shape Restrictions," NBER Working Papers 8944, National Bureau of Economic Research, Inc.
- Rama Cont & Ekaterina Voltchkova, 2005. "Integro-differential equations for option prices in exponential Lévy models," Finance and Stochastics, Springer, vol. 9(3), pages 299-325, July.
- Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
- Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
- Efromovich, Sam & Samarov, Alex, 1996. "Asymptotic equivalence of nonparametric regression and white noise model has its limits," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 143-145, June.
- Susanne Emmer & Claudia Klüppelberg, 2004. "Optimal portfolios when stock prices follow an exponential Lévy process," Finance and Stochastics, Springer, vol. 8(1), pages 17-44, January.
- Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2006-034 is not listed on IDEAS
- Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
- Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
- Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
- Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
- Carr, Peter & Wu, Liuren, 2004.
"Time-changed Levy processes and option pricing,"
Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
- Peter Carr & Liuren Wu, 2002. "Time-Changed Levy Processes and Option Pricing," Finance 0207011, University Library of Munich, Germany.
- Trabs, Mathias, 2011. "Calibration of self-decomposable Lévy models," SFB 649 Discussion Papers 2011-073, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
- Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
- Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
- Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
- Mr. Noureddine Krichene, 2005. "Subordinated Levy Processes and Applications to Crude Oil Options," IMF Working Papers 2005/174, International Monetary Fund.
- Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
- Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2017.
"Short-Term Market Risks Implied by Weekly Options,"
Journal of Finance, American Finance Association, vol. 72(3), pages 1335-1386, June.
- Torben G. Andersen & Nicola Fusari & Viktor Todorov, 2018. "Short-Term Market Risks Implied by Weekly Options," CREATES Research Papers 2018-08, Department of Economics and Business Economics, Aarhus University.
- Paweł Kliber, 2019. "Continuous and jump changes in prices processes in the selected stock markets," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 54, pages 333-344.
- Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
- Thomas Mazzoni, 2018. "Asymptotic Expansion of Risk-Neutral Pricing Density," IJFS, MDPI, vol. 6(1), pages 1-26, March.
- Bates, David S., 2012. "U.S. stock market crash risk, 1926–2010," Journal of Financial Economics, Elsevier, vol. 105(2), pages 229-259.
- Maurya, Vikas & Singh, Ankit & Yadav, Vivek S. & Rajpoot, Manoj K., 2024. "Efficient pricing of options in jump–diffusion models: Novel implicit–explicit methods for numerical valuation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 202-225.
- Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
- David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
More about this item
Keywords
European option; Jump diffusion; Minimax rates; Severely ill-posed; Nonlinear inverse problem; Spectral cut-off; 60G51; 62G20; 91B28; G13; C14;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:10:y:2006:i:4:p:449-474. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.