IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.13905.html
   My bibliography  Save this paper

Intra-Day Price Simulation with Generative Adversarial Modelling of the Order Flow

Author

Listed:
  • Ye-Sheen Lim
  • Denise Gorse

Abstract

Intra-day price variations in financial markets are driven by the sequence of orders, called the order flow, that is submitted at high frequency by traders. This paper introduces a novel application of the Sequence Generative Adversarial Networks framework to model the order flow, such that random sequences of the order flow can then be generated to simulate the intra-day variation of prices. As a benchmark, a well-known parametric model from the quantitative finance literature is selected. The models are fitted, and then multiple random paths of the order flow sequences are sampled from each model. Model performances are then evaluated by using the generated sequences to simulate price variations, and we compare the empirical regularities between the price variations produced by the generated and real sequences. The empirical regularities considered include the distribution of the price log-returns, the price volatility, and the heavy-tail of the log-returns distributions. The results show that the order sequences from the generative model are better able to reproduce the statistical behaviour of real price variations than the sequences from the benchmark.

Suggested Citation

  • Ye-Sheen Lim & Denise Gorse, 2021. "Intra-Day Price Simulation with Generative Adversarial Modelling of the Order Flow," Papers 2109.13905, arXiv.org.
  • Handle: RePEc:arx:papers:2109.13905
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.13905
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Arseniy Kukanov & Sasha Stoikov, 2014. "The Price Impact of Order Book Events," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 47-88.
    2. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    3. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Ye-Sheen Lim & Denise Gorse, 2020. "Deep Probabilistic Modelling of Price Movements for High-Frequency Trading," Papers 2004.01498, arXiv.org.
    5. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    6. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    7. Marco Avellaneda & Sasha Stoikov, 2008. "High-frequency trading in a limit order book," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 217-224.
    8. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Jacquier & Hao Liu, 2017. "Optimal liquidation in a Level-I limit order book for large tick stocks," Papers 1701.01327, arXiv.org, revised Nov 2017.
    2. A. Sadoghi & J. Vecer, 2015. "Optimum Liquidation Problem Associated with the Poisson Cluster Process," Papers 1507.06514, arXiv.org, revised Dec 2015.
    3. Zijian Shi & John Cartlidge, 2024. "Neural stochastic agent‐based limit order book simulation with neural point process and diffusion probabilistic model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    4. Weibing Huang & Charles-Albert Lehalle & Mathieu Rosenbaum, 2015. "Simulating and Analyzing Order Book Data: The Queue-Reactive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 107-122, March.
    5. Rama Cont & Marvin S. Mueller, 2019. "A stochastic partial differential equation model for limit order book dynamics," Papers 1904.03058, arXiv.org, revised May 2021.
    6. Korolev, V.Yu. & Chertok, A.V. & Korchagin, A.Yu. & Zeifman, A.I., 2015. "Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 224-241.
    7. Alexander Lykov & Stepan Muzychka & Kirill Vaninsky, 2016. "Investor'S Sentiment In Multi-Agent Model Of The Continuous Double Auction," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-29, September.
    8. Saran Ahuja & George Papanicolaou & Weiluo Ren & Tzu-Wei Yang, 2016. "Limit order trading with a mean reverting reference price," Papers 1607.00454, arXiv.org, revised Nov 2016.
    9. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
    10. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Rama Cont & Marvin Muller, 2019. "A Stochastic Pde Model For Limit Order Book Dynamics," Working Papers hal-02090449, HAL.
    12. David Evangelista & Yuri Saporito & Yuri Thamsten, 2022. "Price formation in financial markets: a game-theoretic perspective," Papers 2202.11416, arXiv.org.
    13. Roman Gayduk & Sergey Nadtochiy, 2016. "Endogenous Formation of Limit Order Books: Dynamics Between Trades," Papers 1605.09720, arXiv.org, revised Jun 2017.
    14. Alexander Lipton & Umberto Pesavento & Michael G Sotiropoulos, 2013. "Trade arrival dynamics and quote imbalance in a limit order book," Papers 1312.0514, arXiv.org.
    15. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    16. Fengpei Li & Vitalii Ihnatiuk & Ryan Kinnear & Anderson Schneider & Yuriy Nevmyvaka, 2022. "Do price trajectory data increase the efficiency of market impact estimation?," Papers 2205.13423, arXiv.org, revised Mar 2023.
    17. Peng Wu & Marcello Rambaldi & Jean-Franc{c}ois Muzy & Emmanuel Bacry, 2019. "Queue-reactive Hawkes models for the order flow," Papers 1901.08938, arXiv.org.
    18. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    19. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    20. Jack Sarkissian, 2013. "Coupled mode theory of stock price formation," Papers 1312.4622, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.13905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.