IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v6y2017i3d10.1007_s13676-014-0070-4.html
   My bibliography  Save this article

Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty

Author

Listed:
  • Oded Cats

    (Delft University of Technology
    KTH Royal Institute of Technology)

  • Zafeira Gkioulou

    (KTH Royal Institute of Technology)

Abstract

Public transport systems are subject to uncertainties related to traffic dynamic, operations, and passenger demand. Passenger waiting time is thus a random variable subject to day-to-day variations and the interaction between vehicle and passenger stochastic arrival processes. While the provision of real-time information could potentially reduce travel uncertainty, its impacts depend on the underlying service reliability, the performance of the prognosis scheme, and its perceived credibility. This paper presents a modeling framework for analyzing passengers’ learning process and adaptation with respect to waiting-time uncertainty and travel information. The model consists of a within-day network loading procedure and a day-to-day learning process, which are implemented in an agent-based simulation model. Each loop of within-day dynamics assigns travelers to paths by simulating the progress of individual travelers and vehicles as well as the generation and dissemination of travel information. The day-to-day learning model updates the accumulated memory of each traveler and updates consequently the credibility attributed to each information source based on the experienced waiting time. A case study in Stockholm demonstrates model capabilities and emphasizes the importance of behavioral adaptation when evaluating alternative measures which aim to improve service reliability.

Suggested Citation

  • Oded Cats & Zafeira Gkioulou, 2017. "Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 247-270, September.
  • Handle: RePEc:spr:eurjtl:v:6:y:2017:i:3:d:10.1007_s13676-014-0070-4
    DOI: 10.1007/s13676-014-0070-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-014-0070-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-014-0070-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    3. Mohamed Wahba & Amer Shalaby, 2014. "Learning-based framework for transit assignment modeling under information provision," Transportation, Springer, vol. 41(2), pages 397-417, March.
    4. Ettema, Dick & Tamminga, Guus & Timmermans, Harry & Arentze, Theo, 2005. "A micro-simulation model system of departure time using a perception updating model under travel time uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 325-344, May.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Theo Arentze & Harry Timmermans, 2003. "Modeling learning and adaptation processes in activity-travel choice A framework and numerical experiment," Transportation, Springer, vol. 30(1), pages 37-62, February.
    7. Cats, Oded & Loutos, Gerasimos, 2013. "Real-time bus arrival information system: an empirical evaluation," Working papers in Transport Economics 2013:25, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    8. Chorus, Caspar G. & Arentze, Theo A. & Timmermans, Harry J.P., 2008. "A Random Regret-Minimization model of travel choice," Transportation Research Part B: Methodological, Elsevier, vol. 42(1), pages 1-18, January.
    9. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    10. Kjell Jansson & Bosse Ridderstolpe, 1992. "A Method for the Route-Choice Problem in Public Transport Systems," Transportation Science, INFORMS, vol. 26(3), pages 246-251, August.
    11. Guido Gentile & Sang Nguyen & Stefano Pallottino, 2005. "Route Choice on Transit Networks with Online Information at Stops," Transportation Science, INFORMS, vol. 39(3), pages 289-297, August.
    12. Brakewood, Candace & Barbeau, Sean & Watkins, Kari, 2014. "An experiment evaluating the impacts of real-time transit information on bus riders in Tampa, Florida," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 409-422.
    13. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
    14. Robert B. Noland & John W. Polak, 2002. "Travel time variability: A review of theoretical and empirical issues," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 39-54, January.
    15. Cats, Oded, 2013. "Multi-agent transit operations and assignment model," Working papers in Transport Economics 2013:24, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    16. Dziekan, Katrin & Kottenhoff, Karl, 2007. "Dynamic at-stop real-time information displays for public transport: effects on customers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 489-501, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Luyu & Miller, Harvey J., 2020. "Does real-time transit information reduce waiting time? An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 167-179.
    2. Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    3. Pařil Vilém & Viturka Milan, 2020. "Assessment of Priorities of Construction of High-Speed Rail in the Czech Republic in Terms of Impacts on Internal and External Integration," Review of Economic Perspectives, Sciendo, vol. 20(2), pages 217-241, June.
    4. Peftitsi, Soumela & Jenelius, Erik & Cats, Oded, 2022. "Modeling the effect of real-time crowding information (RTCI) on passenger distribution in trains," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 354-368.
    5. Shelat, Sanmay & Cats, Oded & van Cranenburgh, Sander, 2022. "Traveller behaviour in public transport in the early stages of the COVID-19 pandemic in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 357-371.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cats, Oded & Koutsopoulos, Haris N. & Burghout, Wilco & Toledo, Tomer, 2013. "Effect of real-time transit information on dynamic path choice of passengers," Working papers in Transport Economics 2013:28, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    2. Larsen, Odd I. & Sunde, yvind, 2008. "Waiting time and the role and value of information in scheduled transport," Research in Transportation Economics, Elsevier, vol. 23(1), pages 41-52, January.
    3. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
    4. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    5. Shanjiang Zhu & David Levinson, 2011. "A Portfolio Theory of Route Choice," Working Papers 000096, University of Minnesota: Nexus Research Group.
    6. Jesper Bláfoss Ingvardson & Jonas Kornerup Jensen & Otto Anker Nielsen, 2017. "Analysing improvements to on-street public transport systems: a mesoscopic model approach," Public Transport, Springer, vol. 9(1), pages 385-409, July.
    7. Gao, Kun & Sun, Lijun & Yang, Ying & Meng, Fanyu & Qu, Xiaobo, 2021. "Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 1-21.
    8. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    9. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    10. Li, Zheng & Hensher, David A. & Zeng, Jingjing, 2022. "Travel choice behaviour under uncertainty in real-market settings: A source-dependent utility approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Gardner, Clara Brimnes & Nielsen, Sara Dorthea & Eltved, Morten & Rasmussen, Thomas Kjær & Nielsen, Otto Anker & Nielsen, Bo Friis, 2021. "Calculating conditional passenger travel time distributions in mixed schedule- and frequency-based public transport networks using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 1-17.
    12. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    13. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    14. Taoyuan Yang & Peng Zhao & Xiangming Yao, 2020. "A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    15. Cats, Oded & West, Jens & Eliasson, Jonas, 2016. "A dynamic stochastic model for evaluating congestion and crowding effects in transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 43-57.
    16. Manley, E.J. & Addison, J.D. & Cheng, T., 2015. "Shortest path or anchor-based route choice: a large-scale empirical analysis of minicab routing in London," Journal of Transport Geography, Elsevier, vol. 43(C), pages 123-139.
    17. Schwanen, Tim, 2020. "Towards decolonial human subjects in research on transport," Journal of Transport Geography, Elsevier, vol. 88(C).
    18. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    19. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    20. Caspar G. Chorus & Benedict G. C. Dellaert, 2012. "Travel Choice Inertia: The Joint Role of Risk Aversion and Learning," Journal of Transport Economics and Policy, University of Bath, vol. 46(1), pages 139-155, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:6:y:2017:i:3:d:10.1007_s13676-014-0070-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.