Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information
Author
Abstract
Suggested Citation
DOI: 10.1287/ijoc.2021.1091
Download full text from publisher
References listed on IDEAS
- Christiane Barz & Daniel Gartner, 2016. "Air Cargo Network Revenue Management," Transportation Science, INFORMS, vol. 50(4), pages 1206-1222, November.
- Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
- Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
- Jiaqiao Hu, 2015. "Model-Based Stochastic Search Methods," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 319-340, Springer.
- Kate A. Smith, 1999. "Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 15-34, February.
- Marie Chau & Michael C. Fu, 2015. "An Overview of Stochastic Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 149-178, Springer.
- Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2011. "Network Cargo Capacity Management," Operations Research, INFORMS, vol. 59(4), pages 1008-1023, August.
- Michael C. Fu, 2015. "Overview of the Handbook," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 1-7, Springer.
- Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
- Stein W. Wallace, 2000. "Decision Making Under Uncertainty: Is Sensitivity Analysis of Any Use?," Operations Research, INFORMS, vol. 48(1), pages 20-25, February.
- Zelda B. Zabinsky, 2015. "Stochastic Adaptive Search Methods: Theory and Implementation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 293-318, Springer.
- Mantovani, Serena & Morganti, Gianluca & Umang, Nitish & Crainic, Teodor Gabriel & Frejinger, Emma & Larsen, Eric, 2018. "The load planning problem for double-stack intermodal trains," European Journal of Operational Research, Elsevier, vol. 267(1), pages 107-119.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yilmaz, Dogacan & Büyüktahtakın, İ. Esra, 2024. "An expandable machine learning-optimization framework to sequential decision-making," European Journal of Operational Research, Elsevier, vol. 314(1), pages 280-296.
- Justin Dumouchelle & Emma Frejinger & Andrea Lodi, 2024. "Reinforcement learning for freight booking control problems," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(4), pages 318-345, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
- Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
- Christoph Hertrich & Martin Skutella, 2023. "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1079-1097, September.
- Dogacan Yilmaz & İ. Esra Büyüktahtakın, 2023. "Learning Optimal Solutions via an LSTM-Optimization Framework," SN Operations Research Forum, Springer, vol. 4(2), pages 1-40, June.
- Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
- Dimitris Bertsimas & Cheol Woo Kim, 2023. "A Prescriptive Machine Learning Approach to Mixed-Integer Convex Optimization," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1225-1241, November.
- Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
- Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Justin Dumouchelle & Emma Frejinger & Andrea Lodi, 2024. "Reinforcement learning for freight booking control problems," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(4), pages 318-345, August.
- Quentin Cappart & David Bergman & Louis-Martin Rousseau & Isabeau Prémont-Schwarz & Augustin Parjadis, 2022. "Improving Variable Orderings of Approximate Decision Diagrams Using Reinforcement Learning," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2552-2570, September.
- Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
- David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
- Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
- Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
- Yu Yang & Natashia Boland & Martin Savelsbergh, 2021. "Multivariable Branching: A 0-1 Knapsack Problem Case Study," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1354-1367, October.
- Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
- Charly Robinson La Rocca & Jean-François Cordeau & Emma Frejinger, 2024. "One-Shot Learning for MIPs with SOS1 Constraints," SN Operations Research Forum, Springer, vol. 5(3), pages 1-28, September.
- Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
- Renke Kuhlmann, 2019. "Learning to steer nonlinear interior-point methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 381-419, December.
More about this item
Keywords
supervised learning; deep learning; integer linear programming; stochastic programming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:227-242. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.