IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1354-1367.html
   My bibliography  Save this article

Multivariable Branching: A 0-1 Knapsack Problem Case Study

Author

Listed:
  • Yu Yang

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Natashia Boland

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Martin Savelsbergh

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

We explore the benefits of multivariable branching schemes for linear-programming-based branch-and-bound algorithms for the 0-1 knapsack problem—that is, the benefits of branching on sets of variables rather than on a single variable (the current default in integer-programming solvers). We present examples where multivariable branching has advantages over single-variable branching and partially characterize situations in which this happens. Chvátal shows that for a specific class of 0-1 knapsack instances, a linear-programming-based branch-and-bound algorithm (employing a single-variable branching scheme) must explore exponentially many nodes. We show that for this class of 0-1 knapsack instances, a linear-programming-based branch-and-bound algorithm employing an appropriately chosen multivariable branching scheme explores either three or seven nodes. Finally, we investigate the performance of various multivariable branching schemes for 0-1 knapsack instances computationally and demonstrate their potential; the multivariable branching schemes explored result in smaller search trees (some in search trees that are an order of magnitude smaller), and some also result in shorter solution times. Summary of Contribution : As a powerful modeling tool, mixed-integer programming (MIP) is ubiquitous in Operations Research and is usually solved via the branch-and-bound framework. However, solving MIPs is computationally challenging in general, where branching affects the performance of solvers dramatically. In this paper, we explore the benefits of branching on multiple variables, which can be viewed as a generalization of the standard single-variable branching. We analyze its theoretical behavior on a special instance introduced by Chvátal, which is proved to be hard for single-variable branching. We also partially characterize situations in which branching on multiple variables is superior to its single-variable counterpart. Lastly, we demonstrate its potential in reducing the overall computational time and possible memory usage for storing unexplored nodes through numerical experiments on 0-1 knapsack problems.

Suggested Citation

  • Yu Yang & Natashia Boland & Martin Savelsbergh, 2021. "Multivariable Branching: A 0-1 Knapsack Problem Case Study," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1354-1367, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1354-1367
    DOI: 10.1287/ijoc.2020.1052
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1052
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. T. Linderoth & M. W. P. Savelsbergh, 1999. "A Computational Study of Search Strategies for Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 173-187, May.
    2. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    3. AARDAL, Karen & WEISMANTEL, Robert & WOLSEY, Laurence, 2002. "Non-standard approaches to integer programming," LIDAM Reprints CORE 1568, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Alejandro Marcos Alvarez & Quentin Louveaux & Louis Wehenkel, 2017. "A Machine Learning-Based Approximation of Strong Branching," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 185-195, February.
    5. Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
    6. Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
    7. Liberto, Giovanni Di & Kadioglu, Serdar & Leo, Kevin & Malitsky, Yuri, 2016. "DASH: Dynamic Approach for Switching Heuristics," European Journal of Operational Research, Elsevier, vol. 248(3), pages 943-953.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    3. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    4. Yang, Yu & Boland, Natashia & Dilkina, Bistra & Savelsbergh, Martin, 2022. "Learning generalized strong branching for set covering, set packing, and 0–1 knapsack problems," European Journal of Operational Research, Elsevier, vol. 301(3), pages 828-840.
    5. Dimitris Bertsimas & Cheol Woo Kim, 2023. "A Prescriptive Machine Learning Approach to Mixed-Integer Convex Optimization," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1225-1241, November.
    6. Francisco Jara-Moroni & John E. Mitchell & Jong-Shi Pang & Andreas Wächter, 2020. "An enhanced logical benders approach for linear programs with complementarity constraints," Journal of Global Optimization, Springer, vol. 77(4), pages 687-714, August.
    7. Dimitris Bertsimas & Bartolomeo Stellato, 2022. "Online Mixed-Integer Optimization in Milliseconds," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2229-2248, July.
    8. Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
    9. Álinson S. Xavier & Feng Qiu & Shabbir Ahmed, 2021. "Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 739-756, May.
    10. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    11. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    12. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    13. Eric Larsen & Sébastien Lachapelle & Yoshua Bengio & Emma Frejinger & Simon Lacoste-Julien & Andrea Lodi, 2022. "Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 227-242, January.
    14. Mohammad Sabbagh & Richard Soland, 2009. "An improved partial enumeration algorithm for integer programming problems," Annals of Operations Research, Springer, vol. 166(1), pages 147-161, February.
    15. Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
    16. Miguel Anjos & Xiao-Wen Chang & Wen-Yang Ku, 2014. "Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems," Journal of Global Optimization, Springer, vol. 59(2), pages 227-242, July.
    17. Charly Robinson La Rocca & Jean-François Cordeau & Emma Frejinger, 2024. "One-Shot Learning for MIPs with SOS1 Constraints," SN Operations Research Forum, Springer, vol. 5(3), pages 1-28, September.
    18. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.
    19. Christoph Hertrich & Martin Skutella, 2023. "Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1079-1097, September.
    20. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1354-1367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.