IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v309y2023i3p1392-1408.html
   My bibliography  Save this article

Adaptive solution prediction for combinatorial optimization

Author

Listed:
  • Shen, Yunzhuang
  • Sun, Yuan
  • Li, Xiaodong
  • Eberhard, Andrew
  • Ernst, Andreas

Abstract

This paper aims to predict optimal solutions for combinatorial optimization problems (COPs) via machine learning (ML). To find high-quality solutions efficiently, existing work uses a ML prediction of the optimal solution to guide heuristic search, where the ML model is trained offline under the supervision of solved problem instances with known optimal solutions. To predict the optimal solution with sufficient accuracy, it is critical to provide a ML model with adequate features that can effectively characterize decision variables. However, acquiring such features is challenging due to the high complexity of COPs. This paper proposes a framework that can better characterize decision variables by harnessing feedback from a heuristic search over several iterative steps, enabling an offline-trained ML model to predict the optimal solution in an adaptive manner. We refer to this approach as adaptive solution prediction (ASP). Specifically, we employ a set of statistical measures as features, which can extract useful information from feasible solutions found by a heuristic search and inform the ML model as to which value a decision variable is likely to take in high-quality solutions. Our experiments on three NP-hard COPs show that ASP substantially improves the prediction quality of an offline-trained ML model and achieves competitive results compared to several heuristic methods in terms of solution quality. Furthermore, we demonstrate that ASP can be used as a heuristic-pricing method for column generation, to boost an exact branch-and-price algorithm for solving the graph coloring problem.

Suggested Citation

  • Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
  • Handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:1392-1408
    DOI: 10.1016/j.ejor.2023.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723000838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Václavík, Roman & Novák, Antonín & Šůcha, Přemysl & Hanzálek, Zdeněk, 2018. "Accelerating the Branch-and-Price Algorithm Using Machine Learning," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1055-1069.
    2. Anuj Mehrotra & Michael A. Trick, 1996. "A Column Generation Approach for Graph Coloring," INFORMS Journal on Computing, INFORMS, vol. 8(4), pages 344-354, November.
    3. Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
    4. Christos Voudouris & Edward P.K. Tsang & Abdullah Alsheddy, 2010. "Guided Local Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 321-361, Springer.
    5. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    6. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    7. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    8. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    9. Matteo Fischetti & Juan José Salazar González & Paolo Toth, 1998. "Solving the Orienteering Problem through Branch-and-Cut," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 133-148, May.
    10. Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
    11. S. Basso & A. Ceselli & A. Tettamanzi, 2020. "Random sampling and machine learning to understand good decompositions," Annals of Operations Research, Springer, vol. 284(2), pages 501-526, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miriam Kießling & Sascha Kurz & Jörg Rambau, 2021. "An exact column-generation approach for the lot-type design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 741-780, October.
    2. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    3. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    4. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    5. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    6. Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
    7. Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.
    8. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    9. Stefano Gualandi & Federico Malucelli, 2013. "Constraint Programming-based Column Generation," Annals of Operations Research, Springer, vol. 204(1), pages 11-32, April.
    10. Ferrarini, Luca & Gualandi, Stefano, 2022. "Total Coloring and Total Matching: Polyhedra and Facets," European Journal of Operational Research, Elsevier, vol. 303(1), pages 129-142.
    11. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    12. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    13. Lin, Yun Hui & Yin, Xiao Feng & Tian, Qingyun, 2024. "Unlocking efficiency: End-to-end optimization learning for recurrent facility operational planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    14. Álinson S. Xavier & Feng Qiu & Shabbir Ahmed, 2021. "Learning to Solve Large-Scale Security-Constrained Unit Commitment Problems," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 739-756, May.
    15. Yang, Yu & Boland, Natashia & Dilkina, Bistra & Savelsbergh, Martin, 2022. "Learning generalized strong branching for set covering, set packing, and 0–1 knapsack problems," European Journal of Operational Research, Elsevier, vol. 301(3), pages 828-840.
    16. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    17. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    18. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    19. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    20. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:1392-1408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.