IDEAS home Printed from https://ideas.repec.org/a/spr/etbull/v6y2018i2d10.1007_s40505-017-0130-7.html
   My bibliography  Save this article

Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution

Author

Listed:
  • Carlos Alós-Ferrer

    (University of Cologne)

  • Jaume García-Segarra

    (University of Cologne)

  • Miguel Ginés-Vilar

    (Universitat Jaume I de Castelló)

Abstract

Many bargaining solutions anchor on disagreement, allocating gains with respect to the worst-case scenario. We propose here a solution anchoring on utopia (the ideal, maximal aspirations for all agents), but yielding feasible allocations for any number of agents. The negotiated aspirations solution proposes the best allocation in the direction of utopia starting at an endogenous reference point which depends on both the utopia point and bargaining power. The Kalai–Smorodinsky solution becomes a particular case if (and only if) the reference point lies on the line from utopia to disagreement. We provide a characterization for the two-agent case relying only on standard axioms or natural restrictions thereof: strong Pareto optimality, scale invariance, restricted monotonicity, and restricted concavity. A characterization for the general (n-agent) case is obtained by relaxing Pareto optimality and adding the (standard) axiom of restricted contraction independence, plus the minimal condition that utopia should be selected if available.

Suggested Citation

  • Carlos Alós-Ferrer & Jaume García-Segarra & Miguel Ginés-Vilar, 2018. "Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 6(2), pages 141-155, October.
  • Handle: RePEc:spr:etbull:v:6:y:2018:i:2:d:10.1007_s40505-017-0130-7
    DOI: 10.1007/s40505-017-0130-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40505-017-0130-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40505-017-0130-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrero, Carmen & Marco, Maria Carmen, 1993. "Rational equal-loss solutions for bargaining problems," Mathematical Social Sciences, Elsevier, vol. 26(3), pages 273-286, November.
    2. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    3. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    4. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    5. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    6. Nejat Anbarci, 1995. "Reference Functions and Balanced Concessions in Bargaining," Canadian Journal of Economics, Canadian Economics Association, vol. 28(3), pages 675-682, August.
    7. Cheng-Zhong Qin & Shuzhong Shi & Guofu Tan, 2015. "Nash bargaining for log-convex problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 413-440, April.
    8. Dubra, Juan, 2001. "An asymmetric Kalai-Smorodinsky solution," Economics Letters, Elsevier, vol. 73(2), pages 131-136, November.
    9. Roth, Alvin E., 1977. "Independence of irrelevant alternatives, and solutions to Nash's bargaining problem," Journal of Economic Theory, Elsevier, vol. 16(2), pages 247-251, December.
    10. Robert W. Rosenthal, 1976. "An Arbitration Model for Normal-Form Games," Mathematics of Operations Research, INFORMS, vol. 1(1), pages 82-88, February.
    11. Thomson, William, 1981. "A class of solutions to bargaining problems," Journal of Economic Theory, Elsevier, vol. 25(3), pages 431-441, December.
    12. Thomson, William, 1994. "Cooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 35, pages 1237-1284, Elsevier.
    13. P. L. Yu, 1973. "A Class of Solutions for Group Decision Problems," Management Science, INFORMS, vol. 19(8), pages 936-946, April.
    14. Patrick Harless, 2017. "Endowment additivity and the weighted proportional rules for adjudicating conflicting claims," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 755-781, March.
    15. Jens Leth Hougaard & Mich Tvede, 2003. "Nonconvex n-person bargaining: efficient maxmin solutions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(1), pages 81-95, January.
    16. William Thomson (ed.), 2010. "Bargaining and the Theory of Cooperative Games: John Nash and Beyond," Books, Edward Elgar Publishing, number 13317.
    17. M. Freimer & P. L. Yu, 1976. "Some New Results on Compromise Solutions for Group Decision Problems," Management Science, INFORMS, vol. 22(6), pages 688-693, February.
    18. Emin Karagözoğlu & Kerim Keskin & Elif Özcan-Tok, 2019. "Between anchors and aspirations: a new family of bargaining solutions," Review of Economic Design, Springer;Society for Economic Design, vol. 23(1), pages 53-73, June.
    19. Balakrishnan, P.V. (Sundar) & Gómez, Juan Camilo & Vohra, Rakesh V., 2011. "The Tempered Aspirations solution for bargaining problems with a reference point," Mathematical Social Sciences, Elsevier, vol. 62(3), pages 144-150.
    20. Chun, Youngsub, 1988. "The equal-loss principle for bargaining problems," Economics Letters, Elsevier, vol. 26(2), pages 103-106.
    21. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    22. Youngsub Chun, 2005. "The separability principle in bargaining," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 227-235, July.
    23. Sunil Gupta & Zvi A. Livne, 1988. "Resolving a Conflict Situation with a Reference Outcome: An Axiomatic Model," Management Science, INFORMS, vol. 34(11), pages 1303-1314, November.
    24. Conley, John P. & Wilkie, Simon, 1996. "An Extension of the Nash Bargaining Solution to Nonconvex Problems," Games and Economic Behavior, Elsevier, vol. 13(1), pages 26-38, March.
    25. Peters, Hans, 1985. "A note on additive utility and bargaining," Economics Letters, Elsevier, vol. 17(3), pages 219-222.
    26. Peters, Hans J M, 1986. "Simultaneity of Issues and Additivity in Bargaining," Econometrica, Econometric Society, vol. 54(1), pages 153-169, January.
    27. Chun, Youngsub & Peters, Hans, 1991. "The lexicographic equal-loss solution," Mathematical Social Sciences, Elsevier, vol. 22(2), pages 151-161, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Thomson, 2022. "On the axiomatic theory of bargaining: a survey of recent results," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 491-542, December.
    2. Jaume García Segarra & Miguel Ginés Vilar, 2011. "Weighted Proportional Losses Solution," ThE Papers 10/21, Department of Economic Theory and Economic History of the University of Granada..
    3. Shiran Rachmilevitch, 2017. "Axiomatizations of the equal-loss and weighted equal-loss bargaining solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(1), pages 1-9, June.
    4. Jaume García-Segarra & Miguel Ginés-Vilar, 2019. "Stagnation proofness in n-agent bargaining problems," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 215-224, March.
    5. Claus-Jochen Haake & Cheng-Zhong Qin, 2018. "On unification of solutions to the bargaining problem," Working Papers CIE 113, Paderborn University, CIE Center for International Economics.
    6. M. Voorneveld & A. Nouweland & R. McLean, 2011. "Axiomatizations of the Euclidean compromise solution," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 427-448, August.
    7. Younghwan In, 2008. "On the relevance of alternatives in bargaining: generalized average pay-off solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(2), pages 251-264, June.
    8. Barry Nalebuff, 2021. "A Perspective-Invariant Approach to Nash Bargaining," Management Science, INFORMS, vol. 67(1), pages 577-593, January.
    9. Naeve-Steinweg, E., 2004. "The averaging mechanism," Games and Economic Behavior, Elsevier, vol. 46(2), pages 410-424, February.
    10. José-Manuel Giménez-Gómez & António Osório & Josep E. Peris, 2015. "From Bargaining Solutions to Claims Rules: A Proportional Approach," Games, MDPI, vol. 6(1), pages 1-7, March.
    11. Fabio Galeotti & Maria Montero & Anders Poulsen, 2022. "The Attraction and Compromise Effects in Bargaining: Experimental Evidence," Management Science, INFORMS, vol. 68(4), pages 2987-3007, April.
    12. l'Haridon, Olivier & Malherbet, Franck & Pérez-Duarte, Sébastien, 2013. "Does bargaining matter in the small firms matching model?," Labour Economics, Elsevier, vol. 21(C), pages 42-58.
    13. Forgo, F. & Szidarovszky, F., 2003. "On the relation between the Nash bargaining solution and the weighting method," European Journal of Operational Research, Elsevier, vol. 147(1), pages 108-116, May.
    14. Driesen, Bram, 2012. "Proportional concessions and the leximin solution," Economics Letters, Elsevier, vol. 114(3), pages 288-291.
    15. Ok, Efe A., 1998. "Inequality averse collective choice," Journal of Mathematical Economics, Elsevier, vol. 30(3), pages 301-321, October.
    16. Jaume García-Segarra & Miguel Ginés-Vilar, 2013. "Stagnation proofness and individually monotonic bargaining solutions," Working Papers 2013/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    17. Bram Driesen, 2016. "Bargaining, conditional consistency, and weighted lexicographic Kalai-Smorodinsky Solutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(4), pages 777-809, April.
    18. Dominik Karos & Nozomu Muto & Shiran Rachmilevitch, 2018. "A generalization of the Egalitarian and the Kalai–Smorodinsky bargaining solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1169-1182, November.
    19. Omer F. Baris, 2018. "Timing effect in bargaining and ex ante efficiency of the relative utilitarian solution," Theory and Decision, Springer, vol. 84(4), pages 547-556, June.
    20. Kapeller, Jakob & Steinerberger, Stefan, 2017. "Stability, fairness and random walks in the bargaining problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 60-71.

    More about this item

    Keywords

    n-Person bargaining; Utopia point; Axiomatic approach; Kalai–Smorodinsky solution;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:etbull:v:6:y:2018:i:2:d:10.1007_s40505-017-0130-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.