IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03462-z.html
   My bibliography  Save this article

Ecological sensitivity and its driving factors in the area along the Sichuan–Tibet Railway

Author

Listed:
  • Yang Chen

    (Chengdu University of Technology)

  • Tingbin Zhang

    (Chengdu University of Technology
    Chengdu University of Technology)

  • Xiaobing Zhou

    (Montana Technological University)

  • Jingji Li

    (Chengdu University of Technology
    Chengdu University of Technology)

  • Guihua Yi

    (Chengdu University of Technology)

  • Xiaojuan Bie

    (Chengdu University of Technology)

  • Jiao Hu

    (Chengdu University of Technology)

  • Bo Wen

    (Chengdu University of Technology)

Abstract

Understanding spatial and temporal characteristics and driving factors of ecological sensitivity are an essential prerequisite for effectively managing environmental changes and steering the rational use of land resources. This study employed the Analytic Hierarchy Process and Coefficient of Variation methods to calculate the weights of ten indicators from 2000 to 2018. Then, spatiotemporal change patterns of ecological sensitivity along the Sichuan–Tibet Railway were analyzed. At the same time, four individual parameters, including soil erosion, land use status, topographic factors, and climate conditions, were evaluated to create a multi-perspective understanding of the entire ecological sensitivity. The key factors affecting ecological sensitivity were explored through a geographic detector model. The results indicate that the ecological sensitivity along the Sichuan–Tibet Railway is predominantly high or moderate, with higher sensitivity observed in the western regions and lower sensitivity in the eastern regions. From 2000 to 2018, the ecological environment showed a trend of deterioration, and the spatial and temporal distribution patterns of the four parameters are closely related to the extensive ecological sensitivity. Based on the GeoDetector results, the spatial distribution of ecological sensitivity is mainly related to digital elevation model, precipitation, and air temperature. The interaction between different factors can enhance the effect on ecological sensitivity. The interaction between precipitation and Vegetation Coverage (FVC) has the largest effect.

Suggested Citation

  • Yang Chen & Tingbin Zhang & Xiaobing Zhou & Jingji Li & Guihua Yi & Xiaojuan Bie & Jiao Hu & Bo Wen, 2024. "Ecological sensitivity and its driving factors in the area along the Sichuan–Tibet Railway," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20189-20208, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03462-z
    DOI: 10.1007/s10668-023-03462-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03462-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03462-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andriantiatsaholiniaina, Luc A. & Kouikoglou, Vassilis S. & Phillis, Yannis A., 2004. "Evaluating strategies for sustainable development: fuzzy logic reasoning and sensitivity analysis," Ecological Economics, Elsevier, vol. 48(2), pages 149-172, February.
    2. Gian-Reto Walther & Eric Post & Peter Convey & Annette Menzel & Camille Parmesan & Trevor J. C. Beebee & Jean-Marc Fromentin & Ove Hoegh-Guldberg & Franz Bairlein, 2002. "Ecological responses to recent climate change," Nature, Nature, vol. 416(6879), pages 389-395, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    3. Anne Goodenough & Adam Hart, 2013. "Correlates of vulnerability to climate-induced distribution changes in European avifauna: habitat, migration and endemism," Climatic Change, Springer, vol. 118(3), pages 659-669, June.
    4. Monika Punia & Suman Nain & Amit Kumar & Bhupendra Singh & Amit Prakash & Krishan Kumar & V. Jain, 2015. "Analysis of temperature variability over north-west part of India for the period 1970–2000," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 935-952, January.
    5. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    6. Nicoletta Cannone & M. Guglielmin & P. Convey & M. R. Worland & S. E. Favero Longo, 2016. "Vascular plant changes in extreme environments: effects of multiple drivers," Climatic Change, Springer, vol. 134(4), pages 651-665, February.
    7. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    8. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    9. Donohue, John G. & Piiroinen, Petri T., 2015. "Mathematical modelling of seasonal migration with applications to climate change," Ecological Modelling, Elsevier, vol. 299(C), pages 79-94.
    10. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    11. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    12. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    13. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    14. Chan, Nathan & Wichman, Casey, 2017. "The Effects of Climate on Leisure Demand: Evidence from North America," RFF Working Paper Series 17-20, Resources for the Future.
    15. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    16. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    17. Richter, Andries & Grasman, Johan, 2013. "The transmission of sustainable harvesting norms when agents are conditionally cooperative," Ecological Economics, Elsevier, vol. 93(C), pages 202-209.
    18. A. Kosanic & S. Harrison & K. Anderson & I. Kavcic, 2014. "Present and historical climate variability in South West England," Climatic Change, Springer, vol. 124(1), pages 221-237, May.
    19. Todorov, Vladislav & Marinova, Dora, 2011. "Modelling sustainability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1397-1408.
    20. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03462-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.