IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1281-d685810.html
   My bibliography  Save this article

Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants

Author

Listed:
  • Pei-Wen Chung

    (School of Ecosystem and Forestry Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia)

  • Stephen J. Livesley

    (School of Ecosystem and Forestry Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia)

  • John P. Rayner

    (School of Ecosystem and Forestry Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia)

  • Claire Farrell

    (School of Ecosystem and Forestry Sciences, The University of Melbourne, 500 Yarra Boulevard, Richmond, VIC 3121, Australia)

Abstract

Green façades can provide cooling benefits through the shading of walls, evapotranspiration, and insulation. These benefits depend on good plant coverage and tolerance of heat stress. This requires sufficient rooting volume for plant growth and an adequate supply of moisture. On high-rise buildings, plants can be constrained by small rooting volumes due to engineering weight limits and cost. We assessed effects of rooting volume (21, 42, and 63 L) on the growth and coverage of Akebia quinata and Pandorea pandorana and leaf stress (chlorophyll fluorescence) in response to increasing air temperatures. We showed that 42 and 63 L rooting volumes significantly increased early plant growth and the percentage wall coverage for both species. Specific leaf area was significantly greater when grown in 63 L compared with 21 L. Shoot/root ratio did not change with rooting volumes. Regardless of rooting volume, higher air temperatures on west-facing aspects led to afternoon leaf stress. In practice, for each cubic meter of rooting volume, 21 m 2 ( P. pandorana ) and 10 m 2 ( A. quinata ) canopy coverage can be expected within six months.

Suggested Citation

  • Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1281-:d:685810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    2. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Pérez, Gabriel & Rincón, Lídia & Vila, Anna & González, Josep M. & Cabeza, Luisa F., 2011. "Green vertical systems for buildings as passive systems for energy savings," Applied Energy, Elsevier, vol. 88(12), pages 4854-4859.
    4. K. Oleson & A. Monaghan & O. Wilhelmi & M. Barlage & N. Brunsell & J. Feddema & L. Hu & D. Steinhoff, 2015. "Interactions between urbanization, heat stress, and climate change," Climatic Change, Springer, vol. 129(3), pages 525-541, April.
    5. Luis Pérez-Urrestarazu & Rafael Fernández-Cañero & Antonio Franco-Salas & Gregorio Egea, 2015. "Vertical Greening Systems and Sustainable Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(4), pages 65-85, October.
    6. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cansu Iraz Seyrek Şık & Agata Woźniczka & Barbara Widera, 2022. "A Conceptual Framework for the Design of Energy-Efficient Vertical Green Façades," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    3. Jutta Hollands & Azra Korjenic, 2021. "Evaluation and Planning Decision on Façade Greening Made Easy—Integration in BIM and Implementation of an Automated Design Process," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    4. Rowe, T. & Poppe, J. & Buyle, M. & Belmans, B. & Audenaert, A., 2022. "Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    7. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    8. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Margarita-Niki Assimakopoulos & Rosa Francesca De Masi & Filippo de Rossi & Dimitra Papadaki & Silvia Ruggiero, 2020. "Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens," Sustainability, MDPI, vol. 12(9), pages 1-23, May.
    10. Luis Pérez-Urrestarazu & Rafael Fernández-Cañero & Antonio Franco-Salas & Gregorio Egea, 2015. "Vertical Greening Systems and Sustainable Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(4), pages 65-85, October.
    11. Mina Radić & Marta Brković Dodig & Thomas Auer, 2019. "Green Facades and Living Walls—A Review Establishing the Classification of Construction Types and Mapping the Benefits," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    12. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Faezeh Bagheri Moghaddam & Josep Maria Fort Mir & Alia Besné Yanguas & Isidro Navarro Delgado & Ernest Redondo Dominguez, 2020. "Building Orientation in Green Facade Performance and Its Positive Effects on Urban Landscape Case Study: An Urban Block in Barcelona," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    14. Sara Di Lonardo & Susanna Mariani & Germina Giagnacovo & Antonella Marone & Salvatore Raimondi, 2019. "Green infrastructures for the energetic and environmental sustainability of cities," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 79-98.
    15. Wen Wang & Xiaolin Zhou & Suqing Wu & Min Zhao & Zhan Jin & Ke Bei & Xiangyong Zheng & Chunzhen Fan, 2024. "Vertical Green Wall Systems for Rainwater and Sewage Treatment," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
    16. Ahmed Farouk Kineber & Ayodeji Emmanuel Oke & Mohammed Magdy Hamed & Ehab Farouk Rached & Ali Elmansoury, 2023. "Modeling the Impact of Overcoming the Green Walls Implementation Barriers on Sustainable Building Projects: A Novel Mathematical Partial Least Squares—SEM Method," Mathematics, MDPI, vol. 11(3), pages 1-21, January.
    17. Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
    18. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    19. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    20. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1281-:d:685810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.