IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i4p775-d141521.html
   My bibliography  Save this article

Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area

Author

Listed:
  • Chunlin Li

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Miao Liu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Yuanman Hu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Tuo Shi

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Min Zong

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • M. Todd Walter

    (Department for Biological and Environmental Engineering, Cornell University, 62 Riley-Robb Hall, Ithaca, NY 14853, USA)

Abstract

Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.

Suggested Citation

  • Chunlin Li & Miao Liu & Yuanman Hu & Tuo Shi & Min Zong & M. Todd Walter, 2018. "Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area," IJERPH, MDPI, vol. 15(4), pages 1-14, April.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:775-:d:141521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/4/775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/4/775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pingjin Jiao & Di Xu & Shaoli Wang & Yingduo Yu & Songjun Han, 2015. "Improved SCS-CN Method Based on Storage and Depletion of Antecedent Daily Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4753-4765, October.
    2. P. Singh & B. Yaduvanshi & Swati Patel & Saswati Ray, 2013. "SCS-CN Based Quantification of Potential of Rooftop Catchments and Computation of ASRC for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2001-2012, May.
    3. Wen-chuan Wang & Dong-mei Xu & Kwok-wing Chau & Guan-jun Lei, 2014. "Assessment of River Water Quality Based on Theory of Variable Fuzzy Sets and Fuzzy Binary Comparison Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4183-4200, September.
    4. J. Patil & A. Sarangi & O. Singh & A. Singh & T. Ahmad, 2008. "Development of a GIS Interface for Estimation of Runoff from Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1221-1239, September.
    5. Shiqiang Du & Anton Van Rompaey & Peijun Shi & Jing’ai Wang, 2015. "A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 111-128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song Liu & Mengnan Lin & Chunlin Li, 2019. "Analysis of the Effects of the River Network Structure and Urbanization on Waterlogging in High-Density Urban Areas—A Case Study of the Pudong New Area in Shanghai," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    2. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    3. Yang Wang & Hao Yin & Zhiruo Liu & Xinyu Wang, 2022. "A Systematic Review of the Scientific Literature on Pollutant Removal from Stormwater Runoff from Vacant Urban Lands," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    2. B. Yan & X. Su & Y. Chen, 2009. "Functional Structure and Data Management of Urban Water Supply Network Based on GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2633-2653, October.
    3. Wenhai Shi & Mingbin Huang & Kate Gongadze & Lianhai Wu, 2017. "A Modified SCS-CN Method Incorporating Storm Duration and Antecedent Soil Moisture Estimation for Runoff Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1713-1727, March.
    4. Muhammad Ajmal & Jae-Hyun Ahn & Tae-Woong Kim, 2016. "Excess Stormwater Quantification in Ungauged Watersheds Using an Event-Based Modified NRCS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1433-1448, March.
    5. Shirisha Pulukuri & Venkata Reddy Keesara & Pratap Deva, 2018. "Flow Forecasting in a Watershed using Autoregressive Updating Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2701-2716, June.
    6. Dagnachew Adugna & Marina Bergen Jensen & Brook Lemma & Geremew Sahilu Gebrie, 2018. "Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    7. Ismail Chenini & Abdallah Mammou & Moufida El May, 2010. "Groundwater Recharge Zone Mapping Using GIS-Based Multi-criteria Analysis: A Case Study in Central Tunisia (Maknassy Basin)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 921-939, March.
    8. Huiyong Yin & Fangying Dong & Yiwen Zhang & Wenju Cheng & Peihe Zhai & Xuyan Ren & Ziang Liu & Yutao Zhai & Xin Li, 2022. "Height Prediction and 3D Visualization of Mining-Induced Water-Conducting Fracture Zone in Western Ordos Basin Based on a Multi-Factor Regression Analysis," Energies, MDPI, vol. 15(11), pages 1-16, May.
    9. Yudan Dou & Xiaolong Xue & Zebin Zhao & Xiaowei Luo & Ankang Ji & Ting Luo, 2018. "Multi-Index Evaluation for Flood Disaster from Sustainable Perspective: A Case Study of Xinjiang in China," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    10. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    11. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    12. Yingru Li & Huixuan Li & Zhongwei Liu & Changhong Miao, 2016. "Spatial Assessment of Cancer Incidences and the Risks of Industrial Wastewater Emission in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
    13. de Andrade, Lúcio Pereira & Espíndola, Rogério Pinto & Pereira, Gilberto Carvalho & Ebecken, Nelson Francisco Favilla, 2016. "Fuzzy modeling of plankton networks," Ecological Modelling, Elsevier, vol. 337(C), pages 149-155.
    14. Vincent Paul Obade & Rattan Lal & Richard Moore, 2014. "Assessing the Accuracy of Soil and Water Quality Characterization Using Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5091-5109, November.
    15. Shiguo Xu & Tianxiang Wang & Suduan Hu, 2015. "Dynamic Assessment of Water Quality Based on a Variable Fuzzy Pattern Recognition Model," IJERPH, MDPI, vol. 12(2), pages 1-19, February.
    16. Ewelina Janicka & Jolanta Kanclerz & Tropikë Agaj & Katarzyna Gizińska, 2023. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    17. Jersain Gómez Núñez & Magdalena García Martínez & Rojacques Mompremier & Beatriz A. González Beltrán & Icela Dagmar Barceló Quintal, 2022. "Methodology to Optimize Rainwater Tank-sizing and Cluster Configuration for a Group of Buildings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5191-5205, October.
    18. Dihang Xu & Zhiyun Ouyang & Tong Wu & Baolong Han, 2020. "Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    19. Meng, Liting & Sun, Yan & Zhao, Shuqing, 2020. "Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization," Land Use Policy, Elsevier, vol. 97(C).
    20. Peng Zhang & Xiangsu Chen & Chaohai Fan, 2020. "Research on a Safety Assessment Method for Leakage in a Heavy Oil Gathering Pipeline," Energies, MDPI, vol. 13(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:4:p:775-:d:141521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.