IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7959-d1146022.html
   My bibliography  Save this article

Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River

Author

Listed:
  • Ewelina Janicka

    (Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

  • Jolanta Kanclerz

    (Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

  • Tropikë Agaj

    (Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

  • Katarzyna Gizińska

    (Department of Land Improvement, Environmental Development and Spatial Management, Poznań University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland)

Abstract

Floods are among the most devastating natural disasters in small suburban catchments. These phenomena, causing loss of life and massive property damage, pose a serious threat to the economy. Hydrological modeling is extremely important in terms of climate change, and the use of appropriate modeling can be a useful tool for flood risk prevention and mitigation. Rainfall–runoff modeling requires the selection of an appropriate hydrological model in order to obtain satisfactory results. Hydrological models are used in water resource planning and management to estimate catchment runoff. Small uncontrolled catchments play a particularly important role in hydrological phenomena, since changes in them affect flows in the recipient. Hydrologists are particularly interested in developing hydrological models that can be made with a minimum of data and parameters. Nash models and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) are examples of simple and most practical hydrologic models. These models were used in this paper to study geographic and qualitative changes in precipitation runoff due to land cover changes. The modeling was carried out for two spatial aspects relating to the years 1940 and 2018. The model allowed for the simulation of the river flow that can occur under different rainfall probabilities. The analysis of the results was used to evaluate the hydrological models used. The hundred-year flow modeled with the Nash model for 1940 was 13.4 m 3 ∙s −1 , whereas the second model gave slightly lower flow values. In addition, modeling the flow for 2018 (after changing the land cover) highlighted the increase in the flow value for both models, where again the flow volume was slightly higher for the Nash model and amounted to about 19 m 3 ∙s −1 . The flow differences for individual models were not too large. This made it possible to conclude that the simulated outflow hydrographs are in good agreement, and this means that the models accurately reproduce the flow of the Michałówka River. The study showed that rapid urbanization adversely affects hydrological processes. In addition, the study showed that a well-distributed model can outperform a global flood forecasting model, especially in terms of magnitude, as in the current study example.

Suggested Citation

  • Ewelina Janicka & Jolanta Kanclerz & Tropikë Agaj & Katarzyna Gizińska, 2023. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7959-:d:1146022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiqiang Du & Anton Van Rompaey & Peijun Shi & Jing’ai Wang, 2015. "A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 111-128, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luoyang Wang & Yao Li & Hao Hou & Yan Chen & Jinjin Fan & Pin Wang & Tangao Hu, 2022. "Analyzing spatial variance of urban waterlogging disaster at multiple scales based on a hydrological and hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1915-1938, November.
    2. Hao Chen & Zongxue Xu & Yang Liu & Yixuan Huang & Fang Yang, 2022. "Urban Flood Risk Assessment Based on Dynamic Population Distribution and Fuzzy Comprehensive Evaluation," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    3. Song-Yue Yang & Shaohua Marko Hsu & Ching Hsiao & Che-Hao Chang, 2023. "Digital elevation models for high-resolution base flood elevation mapping in a densely populated city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2693-2716, March.
    4. Jean Nsabimana & Sabine Henry & Aloys Ndayisenga & Désiré Kubwimana & Olivier Dewitte & François Kervyn & Caroline Michellier, 2023. "Geo-Hydrological Hazard Impacts, Vulnerability and Perception in Bujumbura (Burundi): A High-Resolution Field-Based Assessment in a Sprawling City," Land, MDPI, vol. 12(10), pages 1-26, October.
    5. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    6. David O. Baloye. & Lobina G. Palamuleni, 2015. "A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria," IJERPH, MDPI, vol. 12(10), pages 1-22, September.
    7. Bakhtiar Osman Khzr & Gaylan Rasul Faqe Ibrahim & Ariean Ali Hamid & Shwan Ahmad Ail, 2022. "Runoff estimation using SCS-CN and GIS techniques in the Sulaymaniyah sub-basin of the Kurdistan region of Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2640-2655, February.
    8. Jiayang Zhang & Yangbo Chen, 2019. "Risk Assessment of Flood Disaster Induced by Typhoon Rainstorms in Guangdong Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    9. Meng, Liting & Sun, Yan & Zhao, Shuqing, 2020. "Comparing the spatial and temporal dynamics of urban expansion in Guangzhou and Shenzhen from 1975 to 2015: A case study of pioneer cities in China’s rapid urbanization," Land Use Policy, Elsevier, vol. 97(C).
    10. Kim, Seokhyeon & Hwang, Soonho & Song, Jung-Hun & Lee, Hyunji & Kang, Moon-Seong, 2023. "Impact of irrigation reservoirs on budget of the watershed-scale water cycle under climate change," Agricultural Water Management, Elsevier, vol. 283(C).
    11. Chunlin Li & Miao Liu & Yuanman Hu & Tuo Shi & Min Zong & M. Todd Walter, 2018. "Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area," IJERPH, MDPI, vol. 15(4), pages 1-14, April.
    12. Meixiu Yu & Qiongfang Li & Xiaolong Liu & Jianyun Zhang, 2016. "Quantifying the effect on flood regime of land-use pattern changes via hydrological simulation in the upper Huaihe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2279-2297, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7959-:d:1146022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.