IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v67y2024i5d10.1007_s00181-024-02612-0.html
   My bibliography  Save this article

Commodity markets and the global macroeconomy: evidence from machine learning and GVAR

Author

Listed:
  • Ernest Owusu Boakye

    (University of Jyväskylä School of Business and Economics (JSBE))

  • Kari Heimonen

    (University of Jyväskylä School of Business and Economics (JSBE))

  • Juha Junttila

    (University of Oulu Business School)

Abstract

Based on a strongly data-intensive machine learning approach, this study first identifies the most essential globally traded commodities in view of their role for the global macroeconomic performance. At the second stage we estimate a global vector autoregressive model to assess in more detail these global reactions. Our results from the first stage indicate that of the 55 analyzed commodity markets, only four are revealed as the most important. At the second step, our GVAR analysis indicates that the commodity market effects on macroeconomic activity are neither unanimous across the commodities nor across macrovariables. As an overall result, the commodity market exposure is clearly stronger among the advanced countries such as the euro area, other developed economies, and China, compared to the emerging economies of Africa, Asia, and Latin America, at both the country and regional levels. This puts a lot of pressure on economic policies aimed at reducing, e.g., the depriving effects of commodity market price development on aggregate economic performance of these countries.

Suggested Citation

  • Ernest Owusu Boakye & Kari Heimonen & Juha Junttila, 2024. "Commodity markets and the global macroeconomy: evidence from machine learning and GVAR," Empirical Economics, Springer, vol. 67(5), pages 1919-1965, November.
  • Handle: RePEc:spr:empeco:v:67:y:2024:i:5:d:10.1007_s00181-024-02612-0
    DOI: 10.1007/s00181-024-02612-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-024-02612-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-024-02612-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    2. Bettendorf, Timo, 2017. "Investigating Global Imbalances: Empirical evidence from a GVAR approach," Economic Modelling, Elsevier, vol. 64(C), pages 201-210.
    3. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    4. Abbas, Syed Kanwar & Lan, Hao, 2020. "Commodity price pass-through and inflation regimes," Energy Economics, Elsevier, vol. 92(C).
    5. Mont'Alverne Duarte, Angelo & Gaglianone, Wagner Piazza & de Carvalho Guillén, Osmani Teixeira & Issler, João Victor, 2021. "Commodity prices and global economic activity: A derived-demand approach," Energy Economics, Elsevier, vol. 96(C).
    6. Stuermer, Martin, 2018. "150 Years Of Boom And Bust: What Drives Mineral Commodity Prices?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 702-717, April.
    7. Gelos, Gaston & Ustyugova, Yulia, 2017. "Inflation responses to commodity price shocks – How and why do countries differ?," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 28-47.
    8. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    9. Chen, Yu-chin & Turnovsky, Stephen J. & Zivot, Eric, 2014. "Forecasting inflation using commodity price aggregates," Journal of Econometrics, Elsevier, vol. 183(1), pages 117-134.
    10. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    11. Liu, Li & Tan, Siming & Wang, Yudong, 2020. "Can commodity prices forecast exchange rates?," Energy Economics, Elsevier, vol. 87(C).
    12. Giannellis, Nikolaos & Koukouritakis, Minoas, 2019. "Gold price and exchange rates: A panel smooth transition regression model for the G7 countries," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 27-46.
    13. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    14. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    15. Wang, Kuan-Min & Lee, Yuan-Ming, 2016. "Hedging exchange rate risk in the gold market: A panel data analysis," Journal of Multinational Financial Management, Elsevier, vol. 35(C), pages 1-23.
    16. Jaunky, Vishal Chandr, 2013. "A cointegration and causality analysis of copper consumption and economic growth in rich countries," Resources Policy, Elsevier, vol. 38(4), pages 628-639.
    17. Arora, Vipin & Cai, Yiyong, 2014. "U.S. natural gas exports and their global impacts," Applied Energy, Elsevier, vol. 120(C), pages 95-103.
    18. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    19. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    20. Cashin, Paul & Mohaddes, Kamiar & Raissi, Maziar & Raissi, Mehdi, 2014. "The differential effects of oil demand and supply shocks on the global economy," Energy Economics, Elsevier, vol. 44(C), pages 113-134.
    21. M. Hashem Pesaran & Ron Smith, 2006. "Macroeconometric Modelling With A Global Perspective," Manchester School, University of Manchester, vol. 74(s1), pages 24-49, September.
    22. Herwartz, Helmut & Plödt, Martin, 2016. "The macroeconomic effects of oil price shocks: Evidence from a statistical identification approach," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 30-44.
    23. Niaz Bashiri Behmiri & Maryam Ahmadi & Juha-Pekka Junttila & Matteo Manera, 2021. "Financial Stress and Basis in Energy Markets," The Energy Journal, , vol. 42(5), pages 67-88, September.
    24. Capie, Forrest & Mills, Terence C. & Wood, Geoffrey, 2005. "Gold as a hedge against the dollar," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(4), pages 343-352, October.
    25. Beckmann, Joscha & Czudaj, Robert L. & Arora, Vipin, 2020. "The relationship between oil prices and exchange rates: Revisiting theory and evidence," Energy Economics, Elsevier, vol. 88(C).
    26. Ge, Yiqing & Tang, Ke, 2020. "Commodity prices and GDP growth," International Review of Financial Analysis, Elsevier, vol. 71(C).
    27. Ferraro, Domenico & Rogoff, Kenneth & Rossi, Barbara, 2015. "Can oil prices forecast exchange rates? An empirical analysis of the relationship between commodity prices and exchange rates," Journal of International Money and Finance, Elsevier, vol. 54(C), pages 116-141.
    28. Jacks, David S. & Stuermer, Martin, 2020. "What drives commodity price booms and busts?," Energy Economics, Elsevier, vol. 85(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantinos N. Konstantakis & Panayotis G. Michaelides & Livia Chatzieleftheriou & Arsenios‐Georgios N. Prelorentzos, 2022. "Crisis and the Chinese miracle: A network—GVAR model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(3), pages 900-921, July.
    2. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    3. Kamiar Mohaddes & Mehdi Raissi, 2019. "The US oil supply revolution and the global economy," Empirical Economics, Springer, vol. 57(5), pages 1515-1546, November.
    4. Mohaddes, Kamiar & Pesaran, M. Hashem, 2017. "Oil prices and the global economy: Is it different this time around?," Energy Economics, Elsevier, vol. 65(C), pages 315-325.
    5. Omoshoro-Jones, Oyeyinka S. & Bonga-Bonga, Lumengo, 2021. "Global imbalances, external adjustment and propagated shocks: An African perspective from a global VAR model," International Economics, Elsevier, vol. 165(C), pages 186-203.
    6. Chatziantoniou, Ioannis & Elsayed, Ahmed H. & Gabauer, David & Gozgor, Giray, 2023. "Oil price shocks and exchange rate dynamics: Evidence from decomposed and partial connectedness measures for oil importing and exporting economies," Energy Economics, Elsevier, vol. 120(C).
    7. Cashin, Paul & Mohaddes, Kamiar & Raissi, Mehdi, 2017. "China's slowdown and global financial market volatility: Is world growth losing out?," Emerging Markets Review, Elsevier, vol. 31(C), pages 164-175.
    8. Peltonen, Tuomas A. & Gross, Marco & Behn, Markus, 2016. "Assessing the costs and benefits of capital-based macroprudential policy," Working Paper Series 1935, European Central Bank.
    9. Athanasios Triantafyllou & Dimitrios Bakas & Marilou Ioakimidis, 2023. "Commodity price uncertainty as a leading indicator of economic activity," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 4194-4219, October.
    10. Chisiridis, Konstantinos & Mouratidis, Kostas & Panagiotidis, Theodore, 2022. "The north-south divide, the euro and the world," Journal of International Money and Finance, Elsevier, vol. 121(C).
    11. Fernandez, Viviana & Pastén-Henríquez, Boris & Tapia-Griñen, Pablo & Wagner, Rodrigo, 2023. "Commodity prices under the threat of operational disruptions: Labor strikes at copper mines," Journal of Commodity Markets, Elsevier, vol. 32(C).
    12. Dumrongrittikul, Taya & Anderson, Heather & Vahid, Farshid, 2019. "The global effects of productivity gains in Asian emerging economies," Economic Modelling, Elsevier, vol. 83(C), pages 127-140.
    13. Dovern, Jonas & Feldkircher, Martin & Huber, Florian, 2016. "Does joint modelling of the world economy pay off? Evaluating global forecasts from a Bayesian GVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 86-100.
    14. Mariam Camarero & Josep Lluís Carrion‐i‐Silvestre & Cecilio Tamarit, 2021. "External imbalances from a GVAR perspective," The World Economy, Wiley Blackwell, vol. 44(11), pages 3202-3245, November.
    15. Todd Sarnstrom & Michael Ryan, 2023. "Third‐country exchange rate effects on foreign direct investment flows: A global vector autoregessive approach," Review of International Economics, Wiley Blackwell, vol. 31(2), pages 522-549, May.
    16. Mohaddes, Kamiar & Pesaran, M. Hashem, 2016. "Country-specific oil supply shocks and the global economy: A counterfactual analysis," Energy Economics, Elsevier, vol. 59(C), pages 382-399.
    17. Feldkircher, Martin & Siklos, Pierre L., 2019. "Global inflation dynamics and inflation expectations," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 217-241.
    18. Chudik, Alexander & Mohaddes, Kamiar & Pesaran, M. Hashem & Raissi, Mehdi & Rebucci, Alessandro, 2021. "A counterfactual economic analysis of Covid-19 using a threshold augmented multi-country model," Journal of International Money and Finance, Elsevier, vol. 119(C).
    19. Huidan Xue & Chenguang Li & Liming Wang & Wen-Hao Su, 2021. "Spatial Price Transmission and Price Dynamics of Global Butter Export Market under Economic Shocks," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    20. Pincheira, Pablo & Jarsun, Nabil, 2020. "Summary of the Paper Entitled: Forecasting Fuel Prices with the Chilean Exchange Rate," MPRA Paper 105056, University Library of Munich, Germany.

    More about this item

    Keywords

    Commodity prices; Macroeconomy; Machine learning; Global VAR;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • F42 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Policy Coordination and Transmission
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:67:y:2024:i:5:d:10.1007_s00181-024-02612-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.