IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v63y2022i5d10.1007_s00181-022-02218-4.html
   My bibliography  Save this article

Measurement error and its impact on estimates of income dynamics

Author

Listed:
  • Nayoung Lee

    (University of Cincinnati)

Abstract

This paper examines whether reported income generates biases for studies on economic mobility and poverty dynamics. Using a linear measurement error model capturing mean-reverting measurement error, this study finds that substantial classical measurement error exists in reported data, leading to a bias toward zero in the estimate of income dynamics. Time-invariant non-classical measurement error and unobserved heterogeneity offset the effect of classical measurement error. This study also identifies the standard deviation of the measurement error, which is estimated to be about 70% of that of the equation error in the income model, suggesting that random measurement error is substantial.

Suggested Citation

  • Nayoung Lee, 2022. "Measurement error and its impact on estimates of income dynamics," Empirical Economics, Springer, vol. 63(5), pages 2539-2550, November.
  • Handle: RePEc:spr:empeco:v:63:y:2022:i:5:d:10.1007_s00181-022-02218-4
    DOI: 10.1007/s00181-022-02218-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-022-02218-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-022-02218-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
    2. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    3. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    4. Lisa Daniels, 2001. "Testing alternative measures of microenterprise profits and net worth," Journal of International Development, John Wiley & Sons, Ltd., vol. 13(5), pages 599-614.
    5. Christopher R. Bollinger & Amitabh Chandra, 2005. "Iatrogenic Specification Error: A Cautionary Tale of Cleaning Data," Journal of Labor Economics, University of Chicago Press, vol. 23(2), pages 235-258, April.
    6. Meghir, Costas & Pistaferri, Luigi, 2011. "Earnings, Consumption and Life Cycle Choices," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 9, pages 773-854, Elsevier.
    7. Stephen Bond, 2002. "Dynamic panel data models: a guide to microdata methods and practice," CeMMAP working papers CWP09/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
    9. Tullio Jappelli & Luigi Pistaferri, 2010. "The Consumption Response to Income Changes," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 479-506, September.
    10. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    11. Bonggeun Kim & Gary Solon, 2005. "Implications of Mean-Reverting Measurement Error for Longitudinal Studies of Wages and Employment," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 193-196, February.
    12. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2015. "Household Surveys in Crisis," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 199-226, Fall.
    13. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    14. Stephen R. Bond, 2002. "Dynamic panel data models: a guide to micro data methods and practice," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 141-162, August.
    15. Francisca Antman & David J. McKenzie, 2007. "Earnings Mobility and Measurement Error: A Pseudo-Panel Approach," Economic Development and Cultural Change, University of Chicago Press, vol. 56(1), pages 125-161, October.
    16. MaCurdy, Thomas E., 1982. "The use of time series processes to model the error structure of earnings in a longitudinal data analysis," Journal of Econometrics, Elsevier, vol. 18(1), pages 83-114, January.
    17. Neil McCulloch & Bob Baulch, 2000. "Simulating the impact of policy upon chronic and transitory poverty in rural Pakistan," Journal of Development Studies, Taylor & Francis Journals, vol. 36(6), pages 100-130.
    18. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    19. Paul Glewwe & Hai-Anh Hoang Dang, 2011. "Was Vietnam's Economic Growth in the 1990s Pro-Poor? An Analysis of Panel Data from Vietnam," Economic Development and Cultural Change, University of Chicago Press, vol. 59(3), pages 583-608.
    20. Lokshin Michael & Ravallion Martin, 2004. "Household Income Dynamics in Two Transition Economies," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-33, September.
    21. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    22. Windmeijer, Frank, 2005. "A finite sample correction for the variance of linear efficient two-step GMM estimators," Journal of Econometrics, Elsevier, vol. 126(1), pages 25-51, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hospido, Laura, 2015. "Wage dynamics in the presence of unobserved individual and job heterogeneity," Labour Economics, Elsevier, vol. 33(C), pages 81-93.
    2. Whalley, Alexander, 2011. "Education and labor market risk: Understanding the role of data cleaning," Economics of Education Review, Elsevier, vol. 30(3), pages 528-545, June.
    3. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
    4. Dean R. Hyslop & Wilbur Townsend, 2020. "Earnings Dynamics and Measurement Error in Matched Survey and Administrative Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 457-469, April.
    5. Nayoung Lee & Geert Ridder & John Strauss, 2017. "Estimation of Poverty Transition Matrices with Noisy Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 37-55, January.
    6. Schneider, Sophie Therese, 2018. "North-South trade agreements and the quality of institutions: Panel data evidence," Hohenheim Discussion Papers in Business, Economics and Social Sciences 27-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    7. Möller Joachim & Tubadji Annie, 2009. "The Creative Class, Bohemians and Local Labor Market Performance: A Micro-data Panel Study for Germany 1975–2004," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 229(2-3), pages 270-291, April.
    8. Coviello, Decio & Islam, Roumeen, 2006. "Does aid help improve economic institutions ?," Policy Research Working Paper Series 3990, The World Bank.
    9. Rafiou Raphaël Bétila, 2021. "The impact of Ease of Doing Business on economic growth: a dynamic panel analysis for African countries," SN Business & Economics, Springer, vol. 1(10), pages 1-34, October.
    10. Bravo-Ortega, Claudio & García Marín, Álvaro, 2011. "R&D and Productivity: A Two Way Avenue?," World Development, Elsevier, vol. 39(7), pages 1090-1107, July.
    11. Medina-Durango, Carlos Alberto & Posso Suárez, Christian Manuel & Tamayo, Jorge A. & Monsalve, Emma, 2012. "Dinámica de la demanda laboral en la industria manufacturera colombiana 1993-2009 : una estimación panel VAR," Chapters, in: Arango-Thomas, Luis Eduardo & Hamann-Salcedo, Franz Alonso (ed.), El mercado de trabajo en Colombia : hechos, tendencias e instituciones, chapter 7, pages 289-330, Banco de la Republica de Colombia.
    12. Martin Andersson & Hans Lööf, 2011. "Agglomeration and productivity: evidence from firm-level data," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 601-620, June.
    13. Francisca Antman & David McKenzie, 2007. "Poverty traps and nonlinear income dynamics with measurement error and individual heterogeneity," Journal of Development Studies, Taylor & Francis Journals, vol. 43(6), pages 1057-1083.
    14. Mateo Zokalj, 2016. "The impact of population aging on public finance in the European Union," Financial Theory and Practice, Institute of Public Finance, vol. 40(4), pages 383-412.
    15. Tsun Se Cheong & Yanrui Wu, 2013. "Globalization and Regional Inequality," Economics Discussion / Working Papers 13-10, The University of Western Australia, Department of Economics.
    16. Scott, K. Rebecca, 2011. "Demand and Price Volatility: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2q87432b, Department of Agricultural & Resource Economics, UC Berkeley.
    17. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Upjohn Working Papers 15-242, W.E. Upjohn Institute for Employment Research.
    18. Lai Trung Hoang & Cuong Cao Nguyen & Baiding Hu, 2017. "Ownership Structure and Firm Performance Improvement: Does it Matter in the Vietnamese Stock Market?," Economic Papers, The Economic Society of Australia, vol. 36(4), pages 416-428, December.
    19. Piper, Alan T., 2014. "The Benefits, Challenges and Insights of a Dynamic Panel assessment of Life Satisfaction," MPRA Paper 59556, University Library of Munich, Germany.
    20. Robert A Baade & Robert Baumann & Victor A Matheson, 2009. "Rejecting “Conventional” Wisdom: Estimating the Economic Impact of National Political Conventions," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 35(4), pages 520-530.

    More about this item

    Keywords

    Measurement error; Non-classical measurement error; Economic mobility; Income dynamics;
    All these keywords.

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty
    • O15 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Economic Development: Human Resources; Human Development; Income Distribution; Migration

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:63:y:2022:i:5:d:10.1007_s00181-022-02218-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.