IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v45y2013i3p1361-1366.html
   My bibliography  Save this article

Resolving spurious regressions and serially correlated errors

Author

Listed:
  • Christos Agiakloglou

Abstract

This study investigates the spurious regression phenomenon for two independent stationary and non-stationary processes and illustrates, using a Monte Carlo analysis, that estimation of the spurious regression in first differences or with a lagged dependent variable eliminates the spurious regression problem. Moreover, the results also apply in eliminating the problem of serially correlated errors as well as the problem of ARCH(1) errors. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Christos Agiakloglou, 2013. "Resolving spurious regressions and serially correlated errors," Empirical Economics, Springer, vol. 45(3), pages 1361-1366, December.
  • Handle: RePEc:spr:empeco:v:45:y:2013:i:3:p:1361-1366
    DOI: 10.1007/s00181-012-0647-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-012-0647-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-012-0647-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clive Granger & Namwon Hyung & Yongil Jeon, 2001. "Spurious regressions with stationary series," Applied Economics, Taylor & Francis Journals, vol. 33(7), pages 899-904.
    2. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    3. Newbold, P & Davies, N, 1978. "Error Mis-Specification and Spurious Regressions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 513-519, June.
    4. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    5. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    6. repec:bla:jfinan:v:58:y:2003:i:4:p:1393-1414 is not listed on IDEAS
    7. Francesc Marmol, 1995. "SPURIOUS REGRESSIONS BETWEEN I(d) PROCESSES," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(3), pages 313-321, May.
    8. repec:bla:econom:v:47:y:1980:i:188:p:387-406 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    2. Wang, Kun & Gong, Qiang & Fu, Xiaowen & Fan, Xingli, 2014. "Frequency and aircraft size dynamics in a concentrated growth market: The case of the Chinese domestic market," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 50-58.
    3. Daniel Ventosa-Santaulària & J. Eduardo Vera-Valdés & Alejandra I. Martínez-Olmos, 2016. "A comment on ‘resolving spurious regressions and serially correlated errors’," Empirical Economics, Springer, vol. 51(3), pages 1289-1298, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio E. Noriega & Daniel Ventosa‐Santaulària, 2006. "Spurious Regression Under Broken‐Trend Stationarity," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 671-684, September.
    2. Conlon, Thomas & Cotter, John & Eyiah-Donkor, Emmanuel, 2022. "The illusion of oil return predictability: The choice of data matters!," Journal of Banking & Finance, Elsevier, vol. 134(C).
    3. Kruse Robinson & Ventosa-Santaulària Daniel & Noriega Antonio E., 2017. "Changes in persistence, spurious regressions and the Fisher hypothesis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-28, June.
    4. D. Ventosa-Santaulària, 2009. "Spurious Regression," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-27, August.
    5. Ferson, Wayne E. & Sarkissian, Sergei & Simin, Timothy, 2008. "Asset Pricing Models with Conditional Betas and Alphas: The Effects of Data Snooping and Spurious Regression," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 331-353, June.
    6. Antonio E. Noriega & School of Economics, University of Guanajuato & Daniel Ventosa-Santaulà ria & School of Economics, University of Guanajuato, 2006. "Spurious regression and econometric trends," Computing in Economics and Finance 2006 151, Society for Computational Economics.
    7. Chris Stewart, 2011. "A note on spurious significance in regressions involving I(0) and I(1) variables," Empirical Economics, Springer, vol. 41(3), pages 565-571, December.
    8. Mármol, Francesc, 1999. "How spurious features arise in case of fractional cointegration," DES - Working Papers. Statistics and Econometrics. WS 6349, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Antonio E. Noriega & Daniel Ventosa‐Santaulària, 2007. "Spurious Regression and Trending Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(3), pages 439-444, June.
    10. Chu Ba & Kozhan Roman, 2010. "Spurious Regressions of Stationary AR(p) Processes with Structural Breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-25, December.
    11. Stewart, Chris, 2006. "Spurious correlation of I(0) regressors in models with an I(1) dependent variable," Economics Letters, Elsevier, vol. 91(2), pages 184-189, May.
    12. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    13. Noriega, Antonio E. & Ventosa-Santaulària, Daniel, 2005. "Spurious regression under deterministic and stochastic trends," MPRA Paper 58772, University Library of Munich, Germany.
    14. Kim, Chang Sik & Lee, Sungro, 2011. "Spurious regressions driven by excessive volatility," Economics Letters, Elsevier, vol. 113(3), pages 292-297.
    15. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    16. Jin, Hao & Zhang, Jinsuo & Zhang, Si & Yu, Cong, 2013. "The spurious regression of AR(p) infinite-variance sequence in the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 25-40.
    17. Kent Wang, 2009. "Volatility linkages of the equity, bond and money markets: an implied volatility approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(1), pages 207-219, March.
    18. Malin Gardberg & Lorenzo (L.C.G.) Pozzi, 2018. "Consumption and wealth in the long run: an integrated unobserved component approach," Tinbergen Institute Discussion Papers 18-046/VI, Tinbergen Institute, revised 13 Sep 2018.
    19. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    20. Noriega Antonio E. & Ventosa-Santaulària Daniel, 2011. "A Simple Test for Spurious Regressions," Working Papers 2011-05, Banco de México.

    More about this item

    Keywords

    Spurious regressions; Stationary and non-stationary processes; Lagged dependent variable; Serially correlated errors; ARCH(1) errors; C22;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:45:y:2013:i:3:p:1361-1366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.