Explanation matters: An experimental study on explainable AI
Author
Abstract
Suggested Citation
DOI: 10.1007/s12525-023-00640-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
- Jussupow, Ekaterina & Spohrer, Kai & Heinzl, Armin & Gawlitza, Joshua, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 137446, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Bjoern Niehaves & Kevin Ortbach, 2016. "The inner and the outer model in explanatory design theory: the case of designing electronic feedback systems," European Journal of Information Systems, Taylor & Francis Journals, vol. 25(4), pages 303-316, July.
- Scott Thiebes & Sebastian Lins & Ali Sunyaev, 2021. "Trustworthy artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 447-464, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rongbin Yang & Santoso Wibowo, 2022. "User trust in artificial intelligence: A comprehensive conceptual framework," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2053-2077, December.
- Roman Lukyanenko & Wolfgang Maass & Veda C. Storey, 2022. "Trust in artificial intelligence: From a Foundational Trust Framework to emerging research opportunities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1993-2020, December.
- Erik Hermann & Gizem Yalcin Williams & Stefano Puntoni, 2024. "Deploying artificial intelligence in services to AID vulnerable consumers," Journal of the Academy of Marketing Science, Springer, vol. 52(5), pages 1431-1451, October.
- Jana Gerlach & Paul Hoppe & Sarah Jagels & Luisa Licker & Michael H. Breitner, 2022. "Decision support for efficient XAI services - A morphological analysis, business model archetypes, and a decision tree," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2139-2158, December.
- Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
- Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
- Tinglong Dai & Sridhar Tayur, 2022. "Designing AI‐augmented healthcare delivery systems for physician buy‐in and patient acceptance," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4443-4451, December.
- Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
- Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
- Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
- Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
- Henner Gimpel & Vanessa Graf-Seyfried & Robert Laubacher & Oliver Meindl, 2023. "Towards Artificial Intelligence Augmenting Facilitation: AI Affordances in Macro-Task Crowdsourcing," Group Decision and Negotiation, Springer, vol. 32(1), pages 75-124, February.
- Ekaterina Jussupow & Kai Spohrer & Armin Heinzl, 2022. "Radiologists’ Usage of Diagnostic AI Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(3), pages 293-309, June.
- Kevin Bauer & Andrej Gill, 2024. "Mirror, Mirror on the Wall: Algorithmic Assessments, Transparency, and Self-Fulfilling Prophecies," Information Systems Research, INFORMS, vol. 35(1), pages 226-248, March.
- Sharifpour Hojatallah & Ghaseminezhad Yaser & Hashemi-Tabatabaei Mohammad & Amiri Maghsoud, 2022. "Investigating cause-and-effect relationships between supply chain 4.0 technologies," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 22-46, December.
- Mi, Yunlong & Wang, Zongrun & Quan, Pei & Shi, Yong, 2024. "A semi-supervised concept-cognitive computing system for dynamic classification decision making with limited feedback information," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1123-1138.
- Alexandra Brintrup & George Baryannis & Ashutosh Tiwari & Svetan Ratchev & Giovanna Martinez-Arellano & Jatinder Singh, 2023. "Trustworthy, responsible, ethical AI in manufacturing and supply chains: synthesis and emerging research questions," Papers 2305.11581, arXiv.org.
- Sullivan, Yulia & Fosso Wamba, Samuel, 2024. "Artificial intelligence and adaptive response to market changes: A strategy to enhance firm performance and innovation," Journal of Business Research, Elsevier, vol. 174(C).
- Araz Zirar, 2023. "Can artificial intelligence’s limitations drive innovative work behaviour?," Review of Managerial Science, Springer, vol. 17(6), pages 2005-2034, August.
More about this item
Keywords
Artificial intelligence; AI; XAI; Perception; Experiment;All these keywords.
JEL classification:
- C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:33:y:2023:i:1:d:10.1007_s12525-023-00640-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.