IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16062-d1282485.html
   My bibliography  Save this article

Digital Process Twins as Intelligent Design Technology for Engineering Metaverse/XR Applications

Author

Listed:
  • Christian Stary

    (Department of Business Informatics—Communications Engineering, Business School, Johannes Kepler University, 4040 Linz, Austria)

Abstract

The last years have seen propagating Metaverse and Mixed Reality (Extended Reality, XR) technologies into everyday applications. Due to their immersion and digitalization capability, sustainability issues can be addressed to optimize resource consumption before processes are put to practice or products are materialized. In particular, Digital Process Twin technologies can execute behavior models of socio-technical Cyber-Physical Systems. They allow both designing variants of system behavior and validating implementation architectures for system operation. In this contribution, I leverage these capabilities to capture the behavior-centered intelligence of Metaverse and XR applications. The more accurately user roles and cyber-physical components can be captured by behavior models representing Metaverse/XR applications, the more accurately the environmental, social, and economic impact of design alternatives can be experienced.

Suggested Citation

  • Christian Stary, 2023. "Digital Process Twins as Intelligent Design Technology for Engineering Metaverse/XR Applications," Sustainability, MDPI, vol. 15(22), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16062-:d:1282485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/16062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/16062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ester van Laar & Alexander J. A. M. van Deursen & Jan A. G. M. van Dijk & Jos de Haan, 2020. "Determinants of 21st-Century Skills and 21st-Century Digital Skills for Workers: A Systematic Literature Review," SAGE Open, , vol. 10(1), pages 21582440199, January.
    2. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
    2. Robertson, Jeandri & Ferreira, Caitlin & Botha, Elsamari & Oosthuizen, Kim, 2024. "Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction," Business Horizons, Elsevier, vol. 67(5), pages 499-510.
    3. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    4. Stefano D’Angelo & Angelo Cavallo & Antonio Ghezzi & Francesco Di Lorenzo, 2024. "Understanding corporate entrepreneurship in the digital age: a review and research agenda," Review of Managerial Science, Springer, vol. 18(12), pages 3719-3774, December.
    5. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    6. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    7. Veronika Bikse & Liva Grinevica & Baiba Rivza & Peteris Rivza, 2022. "Consequences and Challenges of the Fourth Industrial Revolution and the Impact on the Development of Employability Skills," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    8. Paweł Ziemba & Mateusz Piwowarski & Kesra Nermend, 2023. "Remote Work in Post-Pandemic Reality—Multi-Criteria Evaluation of Teleconferencing Software," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    9. Henner Gimpel & Vanessa Graf-Seyfried & Robert Laubacher & Oliver Meindl, 2023. "Towards Artificial Intelligence Augmenting Facilitation: AI Affordances in Macro-Task Crowdsourcing," Group Decision and Negotiation, Springer, vol. 32(1), pages 75-124, February.
    10. Araz Zirar, 2023. "Can artificial intelligence’s limitations drive innovative work behaviour?," Review of Managerial Science, Springer, vol. 17(6), pages 2005-2034, August.
    11. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    12. Trocin, Cristina & Hovland, Ingrid Våge & Mikalef, Patrick & Dremel, Christian, 2021. "How Artificial Intelligence affords digital innovation: A cross-case analysis of Scandinavian companies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    13. Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
    14. Guha, Abhijit & Grewal, Dhruv & Kopalle, Praveen K. & Haenlein, Michael & Schneider, Matthew J. & Jung, Hyunseok & Moustafa, Rida & Hegde, Dinesh R. & Hawkins, Gary, 2021. "How artificial intelligence will affect the future of retailing," Journal of Retailing, Elsevier, vol. 97(1), pages 28-41.
    15. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    16. Yahya Fikri & Mohamed Rhalma, 2024. "Artificial Intelligence (AI) in Early Childhood Education (ECE): Do Effects and Interactions Matter?," Post-Print hal-04701470, HAL.
    17. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    18. Ben Allen & Morgan Lane & Elizabeth Anderson Steeves & Hollie Raynor, 2022. "Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity," IJERPH, MDPI, vol. 19(15), pages 1-13, August.
    19. Manjunath Padigar & Ljubomir Pupovac & Ashish Sinha & Rajendra Srivastava, 2022. "The effect of marketing department power on investor responses to announcements of AI-embedded new product innovations," Journal of the Academy of Marketing Science, Springer, vol. 50(6), pages 1277-1298, November.
    20. Priporas, Constantinos Vasilios & Vellore Nagarajan, Durga & Kamenidou, Irene (Eirini), 2023. "A technology-people-integrated toolkit for retail care management during a crisis," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16062-:d:1282485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.