IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i6p165-d827027.html
   My bibliography  Save this article

On End-to-End Intelligent Automation of 6G Networks

Author

Listed:
  • Abdallah Moubayed

    (Electrical & Computer Engineering Department, Western University, London, ON N6A 5B9, Canada)

  • Abdallah Shami

    (Electrical & Computer Engineering Department, Western University, London, ON N6A 5B9, Canada)

  • Anwer Al-Dulaimi

    (Mobile Solutions Unit, EXFO Inc., Montreal, QC H4S 0A4, Canada)

Abstract

The digital transformation of businesses and services is currently in full force, opening the world to a new set of unique challenges and opportunities. In this context, 6G promises to be the set of technologies, architectures, and paradigms that will promote the digital transformation and enable growth and sustainability by offering the means to interact and control the digital and virtual worlds that are decoupled from their physical location. One of the main challenges facing 6G networks is “end-to-end network automation”. This is because such networks have to deal with more complex infrastructure and a diverse set of heterogeneous services and fragmented use cases. Accordingly, this paper aims at envisioning the role of different enabling technologies towards end-to-end intelligent automated 6G networks. To this end, this paper first reviews the literature focusing on the orchestration and automation of next-generation networks by discussing in detail the challenges facing efficient and fully automated 6G networks. This includes automating both the operational and functional elements for 6G networks. Additionally, this paper defines some of the key technologies that will play a vital role in addressing the research gaps and tackling the aforementioned challenges. More specifically, it outlines how advanced data-driven paradigms such as reinforcement learning and federated learning can be incorporated into 6G networks for more dynamic, efficient, effective, and intelligent network automation and orchestration.

Suggested Citation

  • Abdallah Moubayed & Abdallah Shami & Anwer Al-Dulaimi, 2022. "On End-to-End Intelligent Automation of 6G Networks," Future Internet, MDPI, vol. 14(6), pages 1-28, May.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:165-:d:827027
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/6/165/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/6/165/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    2. Zeki Murat Çınar & Abubakar Abdussalam Nuhu & Qasim Zeeshan & Orhan Korhan & Mohammed Asmael & Babak Safaei, 2020. "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-42, October.
    3. Gioele Bigini & Valerio Freschi & Emanuele Lattanzi, 2020. "A Review on Blockchain for the Internet of Medical Things: Definitions, Challenges, Applications, and Vision," Future Internet, MDPI, vol. 12(12), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agrippina Mwangi & Rishikesh Sahay & Elena Fumagalli & Mikkel Gryning & Madeleine Gibescu, 2024. "Towards a Software-Defined Industrial IoT-Edge Network for Next-Generation Offshore Wind Farms: State of the Art, Resilience, and Self-X Network and Service Management," Energies, MDPI, vol. 17(12), pages 1-31, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Changdong, 2024. "How consumers respond to service failures caused by algorithmic mistakes: The role of algorithmic interpretability," Journal of Business Research, Elsevier, vol. 176(C).
    2. Leah Warfield Smith & Randall Lee Rose & Alex R. Zablah & Heath McCullough & Mohammad “Mike” Saljoughian, 2023. "Examining post-purchase consumer responses to product automation," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 530-550, May.
    3. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    4. Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    5. Olcay Özge Ersöz & Ali Fırat İnal & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2022. "A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    6. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    7. André Marie Mbakop & Joseph Voufo & Florent Biyeme & Jean Raymond Lucien Meva’a, 2022. "Moving to a Flexible Shop Floor by Analyzing the Information Flow Coming from Levels of Decision on the Shop Floor of Developing Countries Using Artificial Neural Network: Cameroon, Case Study," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 255-270, June.
    8. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl & Joshua Gawlitza, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Information Systems Research, INFORMS, vol. 32(3), pages 713-735, September.
    9. Henner Gimpel & Vanessa Graf-Seyfried & Robert Laubacher & Oliver Meindl, 2023. "Towards Artificial Intelligence Augmenting Facilitation: AI Affordances in Macro-Task Crowdsourcing," Group Decision and Negotiation, Springer, vol. 32(1), pages 75-124, February.
    10. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    11. Saud Altaf & Shafiq Ahmad & Mazen Zaindin & Shamsul Huda & Sofia Iqbal & Muhammad Waseem Soomro, 2022. "Multiple Industrial Induction Motors Fault Diagnosis Model within Powerline System Based on Wireless Sensor Network," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    12. Araz Zirar, 2023. "Can artificial intelligence’s limitations drive innovative work behaviour?," Review of Managerial Science, Springer, vol. 17(6), pages 2005-2034, August.
    13. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    14. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
    15. Trocin, Cristina & Hovland, Ingrid Våge & Mikalef, Patrick & Dremel, Christian, 2021. "How Artificial Intelligence affords digital innovation: A cross-case analysis of Scandinavian companies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Mari, Alex & Mandelli, Andreina & Algesheimer, René, 2024. "Empathic voice assistants: Enhancing consumer responses in voice commerce," Journal of Business Research, Elsevier, vol. 175(C).
    17. Guha, Abhijit & Grewal, Dhruv & Kopalle, Praveen K. & Haenlein, Michael & Schneider, Matthew J. & Jung, Hyunseok & Moustafa, Rida & Hegde, Dinesh R. & Hawkins, Gary, 2021. "How artificial intelligence will affect the future of retailing," Journal of Retailing, Elsevier, vol. 97(1), pages 28-41.
    18. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    19. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    20. Ben Allen & Morgan Lane & Elizabeth Anderson Steeves & Hollie Raynor, 2022. "Using Explainable Artificial Intelligence to Discover Interactions in an Ecological Model for Obesity," IJERPH, MDPI, vol. 19(15), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:165-:d:827027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.