IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v18y2018i4d10.1007_s10660-017-9283-6.html
   My bibliography  Save this article

Time series analysis for C2C conversion rate

Author

Listed:
  • Ke Gong

    (Chongqing Jiaotong University
    University of Electronic Science and Technology of China)

  • Yi Peng

    (University of Electronic Science and Technology of China)

  • Yong Wang

    (Chongqing Jiaotong University)

  • Maozeng Xu

    (Chongqing Jiaotong University)

Abstract

The rise of online shopping by individuals in recent years has made e-commerce a crucial topic of interest in research and practice. The critical question in this domain is the extent to which online visits convert into purchases. Researchers have proposed decision models to predict consumer conversion behavior that primarily uses click-stream data, path data, panel data, and log data. This paper proposes an empirical mode decomposition (EMD) based ensemble recognition method for conversion rate (EMDER) to explore the potential pattern, business cycles in time series for conversion rate. EMDER builds on some notions, such as the database of candidate factors time series , recognition function, the recognized factor database, cycle function, and residue-trend recognition function. We collect 50 datasets from Taobao.com and find a seasonal pattern, Index of Clothing Consumer Price pattern and the long-term time series pattern with monthly data. For the daily analysis, we discover patterns in the calendar of daily fluctuation, the hesitation window, the consumers’ cash flow determined pattern, the promotion day and holiday influence. A comparison between EMD and Wavelet-based method is conducted, which reveals EMD outperforms the Wavelet-based model in the deposition quality and do not have the model-selection problem. The data analysis results provide support for the proposed method, which indicates that our model enables managers to analyze online consumer purchasing behavior by a new easy approaching way, which is time series of conversion rate.

Suggested Citation

  • Ke Gong & Yi Peng & Yong Wang & Maozeng Xu, 2018. "Time series analysis for C2C conversion rate," Electronic Commerce Research, Springer, vol. 18(4), pages 763-789, December.
  • Handle: RePEc:spr:elcore:v:18:y:2018:i:4:d:10.1007_s10660-017-9283-6
    DOI: 10.1007/s10660-017-9283-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-017-9283-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-017-9283-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    2. Prabuddha De & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2010. "Technology Usage and Online Sales: An Empirical Study," Management Science, INFORMS, vol. 56(11), pages 1930-1945, November.
    3. Jungkun Park & Hoeun Chung, 2009. "Consumers’ travel website transferring behaviour: analysis using clickstream data-time, frequency, and spending," The Service Industries Journal, Taylor & Francis Journals, vol. 29(10), pages 1451-1463, May.
    4. Van den Poel, Dirk & Buckinx, Wouter, 2005. "Predicting online-purchasing behaviour," European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
    5. Chen, Mu-Chen & Wei, Yu, 2011. "Exploring time variants for short-term passenger flow," Journal of Transport Geography, Elsevier, vol. 19(4), pages 488-498.
    6. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    7. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    8. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    9. Sun, Edward W. & Meinl, Thomas, 2012. "A new wavelet-based denoising algorithm for high-frequency financial data mining," European Journal of Operational Research, Elsevier, vol. 217(3), pages 589-599.
    10. Jiang, Meihui & An, Haizhong & Jia, Xiaoliang & Sun, Xiaoqi, 2017. "The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution," Energy, Elsevier, vol. 118(C), pages 742-752.
    11. Kožić, Ivan & Sever, Ivan, 2014. "Measuring business cycles: Empirical Mode Decomposition of economic time series," Economics Letters, Elsevier, vol. 123(3), pages 287-290.
    12. Jia, Xiaoliang & An, Haizhong & Fang, Wei & Sun, Xiaoqi & Huang, Xuan, 2015. "How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective," Energy Economics, Elsevier, vol. 49(C), pages 588-598.
    13. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    14. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    15. Lin, Chiun-Sin & Chiu, Sheng-Hsiung & Lin, Tzu-Yu, 2012. "Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2583-2590.
    16. Ofer Mintz & Imran S. Currim & Ivan Jeliazkov, 2013. "Information Processing Pattern and Propensity to Buy: An Investigation of Online Point-of-Purchase Behavior," Marketing Science, INFORMS, vol. 32(5), pages 716-732, September.
    17. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    18. Oliver Rutz & Randolph Bucklin, 2012. "Does banner advertising affect browsing for brands? clickstream choice model says yes, for some," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 231-257, June.
    19. Jung, Jaesung & Tam, Kwa-Sur, 2013. "A frequency domain approach to characterize and analyze wind speed patterns," Applied Energy, Elsevier, vol. 103(C), pages 435-443.
    20. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
    21. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    22. Nishtha Langer & Chris Forman & Sunder Kekre & Baohong Sun, 2012. "Ushering Buyers into Electronic Channels: An Empirical Analysis," Information Systems Research, INFORMS, vol. 23(4), pages 1212-1231, December.
    23. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    24. Sam K. Hui & Jehoshua Eliashberg & Edward I. George, 2008. "Modeling DVD Preorder and Sales: An Optimal Stopping Approach," Marketing Science, INFORMS, vol. 27(6), pages 1097-1110, 11-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Bac Nguyen & João Carlos Rosmaninho Menezes, 2021. "The thirty-year evolution of customer-to-customer interaction research: a systematic literature review and research implications," Service Business, Springer;Pan-Pacific Business Association, vol. 15(3), pages 391-444, September.
    2. Qing Zhu & Renxian Zuo & Shan Liu & Fan Zhang, 2020. "Online dynamic group-buying community analysis based on high frequency time series simulation," Electronic Commerce Research, Springer, vol. 20(1), pages 81-118, March.
    3. Hans Weytjens & Enrico Lohmann & Martin Kleinsteuber, 2021. "Cash flow prediction: MLP and LSTM compared to ARIMA and Prophet," Electronic Commerce Research, Springer, vol. 21(2), pages 371-391, June.
    4. Aitor Goti & Leire Querejeta-Lomas & Aitor Almeida & José Gaviria de la Puerta & Diego López-de-Ipiña, 2023. "Artificial Intelligence in Business-to-Customer Fashion Retail: A Literature Review," Mathematics, MDPI, vol. 11(13), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiuming & Sun, Mei & Gao, Cuixia & He, Huizi, 2019. "The spillover effects between natural gas and crude oil markets: The correlation network analysis based on multi-scale approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 306-324.
    2. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    3. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    4. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    5. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2016. "The behaviour mechanism analysis of regional natural gas prices: A multi-scale perspective," Energy, Elsevier, vol. 101(C), pages 266-277.
    6. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    7. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    8. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    9. Gong, Xu & Jin, Yujing & Liu, Tangyong, 2023. "Analyzing pure contagion between crude oil and agricultural futures markets," Energy, Elsevier, vol. 269(C).
    10. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    11. Epstein, Leonardo D. & Inostroza-Quezada, Ignacio E. & Goodstein, Ronald C. & Choi, S. Chan, 2021. "Dynamic effects of store promotions on purchase conversion: Expanding technology applications with innovative analytics," Journal of Business Research, Elsevier, vol. 128(C), pages 279-289.
    12. Huang, Shupei & An, Haizhong & Wen, Shaobo & An, Feng, 2017. "Revisiting driving factors of oil price shocks across time scales," Energy, Elsevier, vol. 139(C), pages 617-629.
    13. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    14. Anderl, Eva & Schumann, Jan Hendrik & Kunz, Werner, 2016. "Helping Firms Reduce Complexity in Multichannel Online Data: A New Taxonomy-Based Approach for Customer Journeys," Journal of Retailing, Elsevier, vol. 92(2), pages 185-203.
    15. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    16. Anqiang Huang & Xinjun Liu & Changrui Rao & Yi Zhang & Yifan He, 2022. "A New Container Throughput Forecasting Paradigm under COVID-19," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    17. Lei Jiang & Ling Bai, 2017. "Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    18. Jihong Xiao & Xuehong Zhu & Chuangxia Huang & Xiaoguang Yang & Fenghua Wen & Meirui Zhong, 2019. "A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 287-310, January.
    19. Lin, Tiantian & Liu, Dehong & Zhang, Lili & Lung, Peter, 2019. "The information content of realized volatility of sector indices in China’s stock market," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 625-640.
    20. Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:18:y:2018:i:4:d:10.1007_s10660-017-9283-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.