IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v29y2012i6p2583-2590.html
   My bibliography  Save this article

Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting

Author

Listed:
  • Lin, Chiun-Sin
  • Chiu, Sheng-Hsiung
  • Lin, Tzu-Yu

Abstract

To address the nonlinear and non-stationary characteristics of financial time series such as foreign exchange rates, this study proposes a hybrid forecasting model using empirical mode decomposition (EMD) and least squares support vector regression (LSSVR) for foreign exchange rate forecasting. EMD is used to decompose the dynamics of foreign exchange rate into several intrinsic mode function (IMF) components and one residual component. LSSVR is constructed to forecast these IMFs and residual value individually, and then all these forecasted values are aggregated to produce the final forecasted value for foreign exchange rates. Empirical results show that the proposed EMD-LSSVR model outperforms the EMD-ARIMA (autoregressive integrated moving average) as well as the LSSVR and ARIMA models without time series decomposition.

Suggested Citation

  • Lin, Chiun-Sin & Chiu, Sheng-Hsiung & Lin, Tzu-Yu, 2012. "Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2583-2590.
  • Handle: RePEc:eee:ecmode:v:29:y:2012:i:6:p:2583-2590
    DOI: 10.1016/j.econmod.2012.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999312002507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2012.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    2. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    3. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    5. Duan, Wen-Qi & Stanley, H. Eugene, 2011. "Cross-correlation and the predictability of financial return series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 290-296.
    6. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    2. Ozgur Kisi & Levent Latifoğlu & Fatma Latifoğlu, 2014. "Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4045-4057, September.
    3. Yi-Chen Chung & Hsien-Ming Chou & Chih-Neng Hung & Chihli Hung, 2021. "Using Textual and Economic Features to Predict the RMB Exchange Rate," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(6), pages 1-8.
    4. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    5. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    6. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2018. "Forecasting exchange rate using Variational Mode Decomposition and entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 15-25.
    7. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    8. Li, Hui & Hong, Lu-Yao & He, Jia-Xun & Xu, Xuan-Guo & Sun, Jie, 2013. "Small sample-oriented case-based kernel predictive modeling and its economic forecasting applications under n-splits-k-times hold-out assessment," Economic Modelling, Elsevier, vol. 33(C), pages 747-761.
    9. Jying-Nan Wang & Jiangze Du & Chonghui Jiang & Kin-Keung Lai, 2019. "Chinese Currency Exchange Rates Forecasting with EMD-Based Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, October.
    10. Xiaowen Wang & Ying Ma & Wen Li, 2021. "The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model," SAGE Open, , vol. 11(1), pages 21582440211, March.
    11. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. "“An application of deep learning for exchange rate forecasting”," AQR Working Papers 202201, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2022.
    12. Latha Sreeram & Samie Ahmed Sayed, 2024. "Short-term Forecasting Ability of Hybrid Models for BRIC Currencies," Global Business Review, International Management Institute, vol. 25(3), pages 585-605, June.
    13. Li Xiangfei & Zhang Zaisheng & Huang Chao, 2014. "An EPC Forecasting Method for Stock Index Based on Integrating Empirical Mode Decomposition, SVM and Cuckoo Search Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 2(6), pages 481-504, December.
    14. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    15. Pattnaik, Debidutta & Kumar, Satish & Burton, Bruce & Lim, Weng Marc, 2022. "Economic Modelling at thirty-five: A retrospective bibliometric survey," Economic Modelling, Elsevier, vol. 107(C).
    16. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    17. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    18. Jin, Xuejun & Zhu, Keer & Yang, Xiaolan & Wang, Shouyang, 2021. "Estimating the reaction of Bitcoin prices to the uncertainty of fiat currency," Research in International Business and Finance, Elsevier, vol. 58(C).
    19. Gourav Kumar & Uday Pratap Singh & Sanjeev Jain, 2022. "Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 991-1039, October.
    20. Ke Gong & Yi Peng & Yong Wang & Maozeng Xu, 2018. "Time series analysis for C2C conversion rate," Electronic Commerce Research, Springer, vol. 18(4), pages 763-789, December.
    21. Yu-Sheng Kao & Kazumitsu Nawata & Chi-Yo Huang, 2020. "Predicting Primary Energy Consumption Using Hybrid ARIMA and GA-SVR Based on EEMD Decomposition," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    22. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    23. Ana Paula Santos Gularte & Danusio Gadelha Guimarães Filho & Gabriel Oliveira Torres & Thiago Carvalho Nunes Silva & Vitor Venceslau Curtis, 2024. "Machine Learning-Based Time Series Prediction at Brazilian Stocks Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2477-2508, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
    2. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
    3. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    4. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    5. Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
    6. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    7. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    8. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    9. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    10. Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739, July.
    11. Fu, Sibao & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2019. "Evolutionary support vector machine for RMB exchange rate forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 692-704.
    12. Yu, Lean & Wang, Zishu & Tang, Ling, 2015. "A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting," Applied Energy, Elsevier, vol. 156(C), pages 251-267.
    13. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Horng-I Hsieh & Tsung-Pei Lee & Tian-Shyug Lee, 2011. "A Hybrid Particle Swarm Optimization and Support Vector Regression Model for Financial Time Series Forecasting," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 2(2), pages 48-56, May.
    15. Theodore Syriopoulos & Michael Tsatsaronis & Ioannis Karamanos, 2021. "Support Vector Machine Algorithms: An Application to Ship Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 55-87, January.
    16. Yu, Lean & Zhao, Yang & Tang, Ling, 2014. "A compressed sensing based AI learning paradigm for crude oil price forecasting," Energy Economics, Elsevier, vol. 46(C), pages 236-245.
    17. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    18. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    19. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    20. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:6:p:2583-2590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.