IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i2p579-591.html
   My bibliography  Save this article

Search-and-rescue rendezvous

Author

Listed:
  • Leone, Pierre
  • Buwaya, Julia
  • Alpern, Steve

Abstract

We consider a new type of asymmetric rendezvous search problem in which player II needs to give player I a ‘gift’ which can be in the form of information or material. The gift can either be transfered upon meeting, as in traditional rendezvous, or it can be dropped off by player II at a location he passes, in the hope it will be found by player I. The gift might be a water bottle for a traveller lost in the desert; a supply cache for Captain Scott in the Antarctic; or important information (left as a gift). The common aim of the two players is to minimize the time taken for I to either meet II or find the gift. We find optimal agent paths and drop off times when the search region is a line, the initial distance between the players is known and one or both of the players can leave gifts.

Suggested Citation

  • Leone, Pierre & Buwaya, Julia & Alpern, Steve, 2022. "Search-and-rescue rendezvous," European Journal of Operational Research, Elsevier, vol. 297(2), pages 579-591.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:579-591
    DOI: 10.1016/j.ejor.2021.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721004215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baston, Vic & Kikuta, Kensaku, 2019. "A search problem on a bipartite network," European Journal of Operational Research, Elsevier, vol. 277(1), pages 227-237.
    2. Steve Alpern & Wei Shi Lim, 2002. "Rendezvous of three agents on the line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(3), pages 244-255, April.
    3. S. Gal & J. V. Howard, 2005. "Rendezvous-Evasion Search in Two Boxes," Operations Research, INFORMS, vol. 53(4), pages 689-697, August.
    4. Kikuta, Kensaku & Ruckle, William H., 2010. "Two point one sided rendezvous," European Journal of Operational Research, Elsevier, vol. 207(1), pages 78-82, November.
    5. Qiaoming Han & Donglei Du & Juan Vera & Luis F. Zuluaga, 2008. "Improved Bounds for the Symmetric Rendezvous Value on the Line," Operations Research, INFORMS, vol. 56(3), pages 772-782, June.
    6. Saul Gass & Thomas Saaty, 1955. "The computational algorithm for the parametric objective function," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 39-45, March.
    7. Vic Baston, 1999. "Note: Two rendezvous search problems on the line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(3), pages 335-340, April.
    8. Steve Alpern, 2002. "Rendezvous search on labeled networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(3), pages 256-274, April.
    9. Steve Alpern, 2011. "Find-and-Fetch Search on a Tree," Operations Research, INFORMS, vol. 59(5), pages 1258-1268, October.
    10. Steve Alpern & Anatole Beck, 1999. "Rendezvous Search on the Line with Limited Resources: Maximizing the Probability of Meeting," Operations Research, INFORMS, vol. 47(6), pages 849-861, December.
    11. Shmuel Gal, 1999. "Rendezvous Search on the Line," Operations Research, INFORMS, vol. 47(6), pages 974-976, December.
    12. Pierre Leone & Steve Alpern, 2018. "Rendezvous search with markers that can be dropped at chosen times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 449-461, September.
    13. Zoroa, N. & Zoroa, P. & Fernández-Sáez, M.J., 2009. "Weighted search games," European Journal of Operational Research, Elsevier, vol. 195(2), pages 394-411, June.
    14. J. V. Howard, 1999. "Rendezvous Search on the Interval and the Circle," Operations Research, INFORMS, vol. 47(4), pages 550-558, August.
    15. Lidbetter, Thomas, 2020. "Search and rescue in the face of uncertain threats," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1153-1160.
    16. Steve Alpern, 2002. "Rendezvous Search: A Personal Perspective," Operations Research, INFORMS, vol. 50(5), pages 772-795, October.
    17. Edward J. Anderson & Sándor P. Fekete, 2001. "Two Dimensional Rendezvous Search," Operations Research, INFORMS, vol. 49(1), pages 107-118, February.
    18. Alpern, Steve & Beck, Anatole, 1997. "Rendezvous search on the line with bounded resources: expected time minimization," European Journal of Operational Research, Elsevier, vol. 101(3), pages 588-597, September.
    19. Cheng-Shang Chang & Wanjiun Liao & Ching-Min Lien, 2015. "On the Multichannel Rendezvous Problem: Fundamental Limits, Optimal Hopping Sequences, and Bounded Time-to-Rendezvous," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 1-23, February.
    20. Richard Weber, 2012. "Optimal Symmetric Rendezvous Search on Three Locations," Mathematics of Operations Research, INFORMS, vol. 37(1), pages 111-122, February.
    21. Kikuta, Kensaku & Ruckle, William H., 2007. "Rendezvous search on a star graph with examination costs," European Journal of Operational Research, Elsevier, vol. 181(1), pages 298-304, August.
    22. Vic Baston & Shmuel Gal, 2001. "Rendezvous search when marks are left at the starting points," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 722-731, December.
    23. Steve Alpern & Anatole Beck, 2000. "Pure Strategy Asymmetric Rendezvous on the Line with an Unknown Initial Distance," Operations Research, INFORMS, vol. 48(3), pages 498-501, June.
    24. Elizabeth J. Chester & Reha H. Tütüncü, 2004. "Rendezvous Search on the Labeled Line," Operations Research, INFORMS, vol. 52(2), pages 330-334, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre Leone & Steve Alpern, 2018. "Rendezvous search with markers that can be dropped at chosen times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 449-461, September.
    2. Pierre Leone & Steve Alpern, 2022. "A Symbolic Programming Approach to the Rendezvous Search Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-29, March.
    3. Steve Alpern, 2002. "Rendezvous Search: A Personal Perspective," Operations Research, INFORMS, vol. 50(5), pages 772-795, October.
    4. Cheng-Shang Chang & Wanjiun Liao & Ching-Min Lien, 2015. "On the Multichannel Rendezvous Problem: Fundamental Limits, Optimal Hopping Sequences, and Bounded Time-to-Rendezvous," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 1-23, February.
    5. Steve Alpern & Li Zeng, 2022. "Social Distancing, Gathering, Search Games: Mobile Agents on Simple Networks," Dynamic Games and Applications, Springer, vol. 12(1), pages 288-311, March.
    6. Steve Alpern & Wei Shi Lim, 2002. "Rendezvous of three agents on the line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(3), pages 244-255, April.
    7. Alpern, Steve, 2008. "Line-of-sight rendezvous," European Journal of Operational Research, Elsevier, vol. 188(3), pages 865-883, August.
    8. Steve Alpern & Thomas Lidbetter, 2015. "Optimal Trade-Off Between Speed and Acuity When Searching for a Small Object," Operations Research, INFORMS, vol. 63(1), pages 122-133, February.
    9. Steve Alpern & Thomas Lidbetter, 2013. "Mining Coal or Finding Terrorists: The Expanding Search Paradigm," Operations Research, INFORMS, vol. 61(2), pages 265-279, April.
    10. Edward J. Anderson & Sándor P. Fekete, 2001. "Two Dimensional Rendezvous Search," Operations Research, INFORMS, vol. 49(1), pages 107-118, February.
    11. Steve Alpern & Vic Baston, 2005. "Rendezvous on a Planar Lattice," Operations Research, INFORMS, vol. 53(6), pages 996-1006, December.
    12. Alpern, Steve & Baston, Vic, 2006. "A common notion of clockwise can help in planar rendezvous," European Journal of Operational Research, Elsevier, vol. 175(2), pages 688-706, December.
    13. Oléron Evans, Thomas P. & Bishop, Steven R., 2013. "Static search games played over graphs and general metric spaces," European Journal of Operational Research, Elsevier, vol. 231(3), pages 667-689.
    14. Steve Alpern, 2017. "Hide-and-Seek Games on a Network, Using Combinatorial Search Paths," Operations Research, INFORMS, vol. 65(5), pages 1207-1214, October.
    15. Qiaoming Han & Donglei Du & Juan Vera & Luis F. Zuluaga, 2008. "Improved Bounds for the Symmetric Rendezvous Value on the Line," Operations Research, INFORMS, vol. 56(3), pages 772-782, June.
    16. Steve Alpern, 2011. "Find-and-Fetch Search on a Tree," Operations Research, INFORMS, vol. 59(5), pages 1258-1268, October.
    17. Alpern, Steve & Katrantzi, Ioanna, 2009. "Equilibria of two-sided matching games with common preferences," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1214-1222, August.
    18. Alpern, Steven & Lidbetter, Thomas, 2015. "Optimal trade-off between speed and acuity when searching for a small object," LSE Research Online Documents on Economics 61504, London School of Economics and Political Science, LSE Library.
    19. J. V. Howard & Marco Timmer, 2013. "New results on rendezvous search on the interval," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 454-467, September.
    20. Vic Baston & Shmuel Gal, 2001. "Rendezvous search when marks are left at the starting points," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 722-731, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:579-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.